1
|
Lv Q, Li Q, Cao P, Wei C, Li Y, Wang Z, Wang L. Designing Silk Biomaterials toward Better Future Healthcare: The Development and Application of Silk-Based Implantable Electronic Devices in Clinical Diagnosis and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411946. [PMID: 39686818 DOI: 10.1002/adma.202411946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/26/2024] [Indexed: 12/18/2024]
Abstract
Implantable medical electronic devices (IMEDs) have attracted great attention and shown versatility for solving clinical problems ranging from real-time monitoring of physiological/ pathological states to electrical stimulation therapy and from monitoring brain cell activity to deep brain stimulation. The ongoing challenge is to select appropriate materials in target device configuration for biomedical applications. Currently, silk-based biomaterials have been developed for the design of diagnostic and therapeutic electronic devices due to their excellent properties and abundant active sites in the structure. Herein, the aim is to summarize the structural characteristics, physicochemical properties, and bioactivities of natural silk biomaterials as well as their derived materials, with a particular focus on the silk-based implantable biomedical electronic devices, such as implantable devices for invasive brain-computer interfaces, neural recording, and in vivo electrostimulation. In addition, future opportunities and challenges are also envisioned, hoping to spark the interests of researchers in interdisciplinary fields such as biomaterials, clinical medicine, and electronics.
Collapse
Affiliation(s)
- Qiying Lv
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qilin Li
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Cao
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chunyu Wei
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuyu Li
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
2
|
Libera V, Malaspina R, Bittolo Bon S, Cardinali MA, Chiesa I, De Maria C, Paciaroni A, Petrillo C, Comez L, Sassi P, Valentini L. Conformational transitions in redissolved silk fibroin films and application for printable self-powered multistate resistive memory biomaterials. RSC Adv 2024; 14:22393-22402. [PMID: 39010927 PMCID: PMC11248567 DOI: 10.1039/d4ra02830a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
3D printing of water stable proteins with elastic properties offers a broad range of applications including self-powered biomedical devices driven by piezoelectric biomaterials. Here, we present a study on water-soluble silk fibroin (SF) films. These films were prepared by mixing degummed silk fibers and calcium chloride (CaCl2) in formic acid, resulting in a silk I-like conformation, which was then converted into silk II by redissolving in phosphate buffer (PBS). Circular dichroism, Raman and infrared (IR) spectroscopies were used to investigate the transitions of secondary structure in silk I and silk II as the pH of the solvent and the sonication time were changed. We showed that a solvent with low pH (e.g. 4) maintains the silk I β-turn structure; in contrast solvent with higher pH (e.g. 7.4) promotes β-sheet features of silk II. Ultrasonic treatment facilitates the transition to water stable silk II only for the SF redissolved in PBS. SF from pH 7.4 solution has been printed using extrusion-based 3D printing. A self-powered memristor was realized, comprising an SF-based electric generator and an SF 3D-printed memristive unit connected in series. By exploiting the piezoelectric properties of silk II with higher β-sheet content and Ca2+ ion transport phenomena, the application of an input voltage driven by a SF generator to SF 3D printed holey structures induces a variation from an initial low resistance state (LRS) to a high resistance state (HRS) that recovers in a few minutes, mimicking the transient memory, also known as short-term memory. Thanks to this holistic approach, these findings can contribute to the development of self-powered neuromorphic networks based on biomaterials with memory capabilities.
Collapse
Affiliation(s)
- Valeria Libera
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia Via A. Pascoli 06123 Perugia Italy
| | - Rocco Malaspina
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia Via A. Pascoli 06123 Perugia Italy
| | - Silvia Bittolo Bon
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia Via A. Pascoli 06123 Perugia Italy
| | - Martina Alunni Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Irene Chiesa
- Department of Ingegneria dell'Informazione, Research Center E. Piaggio, University of Pisa Largo Lucio Lazzarino 1 Pisa 56122 Italy
| | - Carmelo De Maria
- Department of Ingegneria dell'Informazione, Research Center E. Piaggio, University of Pisa Largo Lucio Lazzarino 1 Pisa 56122 Italy
| | - Alessandro Paciaroni
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia Via A. Pascoli 06123 Perugia Italy
| | - Caterina Petrillo
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia Via A. Pascoli 06123 Perugia Italy
| | - Lucia Comez
- CNR-IOM - Istituto Officina dei Materiali, National Research Council of Italy Via Alessandro Pascoli 06123 Perugia Italy
| | - Paola Sassi
- Department of Chemistry, Biology and Biotechnology, University of Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Luca Valentini
- Civil and Environmental Engineering Department, INSTM Research Unit, University of Perugia Strada di Pentima 8 05100 Terni Italy
| |
Collapse
|
3
|
Tian Z, Zhao C, Huang T, Yu L, Sun Y, Tao Y, Cao Y, Du R, Lin W, Zeng J. Silkworm Cocoon: Dual Functions as a Traditional Chinese Medicine and the Raw Material of Promising Biocompatible Carriers. Pharmaceuticals (Basel) 2024; 17:817. [PMID: 39065668 PMCID: PMC11279987 DOI: 10.3390/ph17070817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The silkworm cocoon (SC), both as a traditional Chinese medicine and as the raw material for biocompatible carriers, has been extensively used in the medical and biomedical fields. This review elaborates on the multiple functions of SC, with an in-depth analysis of its chemical composition, biological activities, as well as its applications in modern medicine. The primary chemical components of SC include silk fibroin (SF), silk sericin (SS), and other flavonoid-like bioactive compounds demonstrating various biological effects. These include hypoglycemic, cardioprotective, hypolipidemic, anti-inflammatory, antioxidant, and antimicrobial actions, which highlight its potential therapeutic benefits. Furthermore, the review explores the applications of silk-derived materials in drug delivery systems, tissue engineering, regenerative medicine, and in vitro diagnostics. It also highlights the progression of SC from laboratory research to clinical trials, emphasizing the safety and efficacy of SC-based materials across multiple medical domains. Moreover, we discuss the market products developed from silk proteins, illustrating the transition from traditional uses to contemporary medical applications. This review provides support in understanding the current research status of SC and the further development and application of its derived products.
Collapse
Affiliation(s)
- Zhijie Tian
- School of Chemistry & Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Chuncao Zhao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Ting Huang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Lining Yu
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Yijie Sun
- Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China;
| | - Yian Tao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Yunfeng Cao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| | - Ruofei Du
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Wenhui Lin
- School of Chemistry & Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Jia Zeng
- NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai 200032, China; (C.Z.); (T.H.); (L.Y.); (Y.T.); (Y.C.)
| |
Collapse
|
4
|
Alunni Cardinali M, Ceccarini MR, Chiesa I, Bittolo Bon S, Rondini T, Serrano-Ruiz M, Caporali M, Tacchi S, Verdini A, Petrillo C, De Maria C, Beccari T, Sassi P, Valentini L. Mechanical Transfer of Black Phosphorus on a Silk Fibroin Substrate: A Viable Method for Photoresponsive and Printable Biomaterials. ACS OMEGA 2024; 9:17977-17988. [PMID: 38680339 PMCID: PMC11044148 DOI: 10.1021/acsomega.3c09461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Despite the technological importance of semiconductor black phosphorus (BP) in materials science, maintaining the stability of BP crystals in organic media and protecting them from environmental oxidation remains challenging. In this study, we present the synthesis of bulk BP and the exploitation of the viscoelastic properties of a regenerated silk fibroin (SF) film as a biocompatible substrate to transfer BP flakes, thereby preventing oxidation. A model based on the flow of polymers revealed that the applied flow-induced stresses exceed the yield stress of the BP aggregate. Raman spectroscopy was used to investigate the exfoliation efficiency as well as the environmental stability of BP transferred on the SF substrate. Notably, BP flakes transferred to the SF substrate demonstrated improved stability when SF was dissolved in a phosphate-buffered saline medium, and in vitro cancer cell viability experiments demonstrate the tumor ablation efficiency under visible to near-infrared (Vis-nIR) radiation. Moreover, the SF and BP-enriched SF (SF/BP) solution was shown to be processable via extrusion-based three-dimensional (3D) printing. Therefore, this work paves the way for a general method for the transferring of BP on natural biodegradable polymers and processing them via 3D printing toward novel functionalities and complex shapes for biomedical purposes.
Collapse
Affiliation(s)
- Martina Alunni Cardinali
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | | | - Irene Chiesa
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Silvia Bittolo Bon
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - Tommaso Rondini
- Department
of Pharmaceutical Science, University of
Perugia, 06123 Perugia, Italy
| | - Manuel Serrano-Ruiz
- Institute
of Chemistry of OrganoMetallic Compounds-ICCOM, National Research
Council-CNR, Via Madonna del Piano10, 50019 Sesto Fiorentino, Italy
| | - Maria Caporali
- Institute
of Chemistry of OrganoMetallic Compounds-ICCOM, National Research
Council-CNR, Via Madonna del Piano10, 50019 Sesto Fiorentino, Italy
| | - Silvia Tacchi
- CNR-IOM
−
Istituto Officina dei Materiali, National
Research Council of Italy, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Alberto Verdini
- CNR-IOM
−
Istituto Officina dei Materiali, National
Research Council of Italy, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Caterina Petrillo
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - Carmelo De Maria
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Tommaso Beccari
- Department
of Pharmaceutical Science, University of
Perugia, 06123 Perugia, Italy
| | - Paola Sassi
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Luca Valentini
- Civil
and Environmental Engineering Department and INSTM Research Unit, University of Perugia, Strada di Pentima 8, 05100 Terni, Italy
| |
Collapse
|
5
|
Zhu X, He M, Zhang J, Jiang Y. Synergistic catalysis and detection of hydrogen peroxide based on a 3D-dimensional molybdenum disulfide interspersed carbon nanotubes nanonetwork immobilized chloroperoxidase biosensor. Bioelectrochemistry 2023; 154:108507. [PMID: 37451043 DOI: 10.1016/j.bioelechem.2023.108507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Enzyme-based electrochemical biosensors are promising for a wide range of applications due to their unique specificity and high sensitivity. In this work, we present a novel enzyme bioelectrode for the sensing of hydrogen peroxide (H2O2). The molybdenum disulfide nanoflowers (MoS2) is self-assembled on carboxylated carbon nanotubes (CNT) to form a three-dimensional conductive network (3D-CNT@MoS2), which is modified with 1-ethyl-3-methylimidazolium bromide (ILEMB), and followed by anchoring chloroperoxidase (CPO) onto the nanocomposite (3D-CNT@MoS2/ILEMB) through covalent binding to form a bioconjugate (3D-CNT@MoS2/ILEMB/CPO). The ILEMB modified 3D-CNT@MoS2/ILEMB has good hydrophilicity and conductivity, which not only provides a suitable microenvironment for the immobilization of CPO but also facilitates the direct electron transfer (DET) of CPO at the electrode. The 3D-CNT@MoS2/ILEMB/CPO bioconjugate modified electrode has a high catalytic efficiency for H2O2. Through electroenzymatic synergistic catalysis for H2O2 detection by 3D-CNT@MoS2/ILEMB/CPO-GCE, a wide detection range of 0.2 μmol·L-1 to 997 μmol·L-1 and a low detection limit of 0.097 μmol・L-1 with high sensitivity of 1050 µA·mmol·L-1·cm-2 were achieved. Additionally, the 3D-CNT@MoS2/ILEMB/CPO-GCE displayed exceptional stability, selectivity, and reproducibility. Furthermore, 3D-CNT@MoS2/ILEMB/CPO-GCE is suitable for sensing of H2O2 in human urine s with good recovery, suggesting its potential application for the detection of H2O2 in biomedical field.
Collapse
Affiliation(s)
- Xuefang Zhu
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Meng He
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Jing Zhang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Yucheng Jiang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| |
Collapse
|
6
|
Mandal T, Mishra SR, Singh V. Comprehensive advances in the synthesis, fluorescence mechanism and multifunctional applications of red-emitting carbon nanomaterials. NANOSCALE ADVANCES 2023; 5:5717-5765. [PMID: 37881704 PMCID: PMC10597556 DOI: 10.1039/d3na00447c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023]
Abstract
Red emitting fluorescent carbon nanomaterials have drawn significant scientific interest in recent years due to their high quantum yield, water-dispersibility, photostability, biocompatibility, ease of surface functionalization, low cost and eco-friendliness. The red emissive characteristics of fluorescent carbon nanomaterials generally depend on the carbon source, reaction time, synthetic approach/methodology, surface functional groups, average size, and other reaction environments, which directly or indirectly help to achieve red emission. The importance of several factors to achieve red fluorescent carbon nanomaterials is highlighted in this review. Numerous plausible theories have been explained in detail to understand the origin of red fluorescence and tunable emission in these carbon-based nanostructures. The above advantages and fluorescence in the red region make them a potential candidate for multifunctional applications in various current fields. Therefore, this review focused on the recent advances in the synthesis approach, mechanism of fluorescence, and electronic and optical properties of red-emitting fluorescent carbon nanomaterials. This review also explains the several innovative applications of red-emitting fluorescent carbon nanomaterials such as biomedicine, light-emitting devices, sensing, photocatalysis, energy, anticounterfeiting, fluorescent silk, artificial photosynthesis, etc. It is hoped that by choosing appropriate methods, the present review can inspire and guide future research on the design of red emissive fluorescent carbon nanomaterials for potential advancements in multifunctional applications.
Collapse
Affiliation(s)
- Tuhin Mandal
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Shiv Rag Mishra
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Vikram Singh
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad Jharkhand 828108 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
7
|
Ferri M, Chiromito EMS, de Carvalho AJF, Morselli D, Degli Esposti M, Fabbri P. Fine Tuning of the Mechanical Properties of Bio-Based PHB/Nanofibrillated Cellulose Biocomposites to Prevent Implant Failure Due to the Bone/Implant Stress Shielding Effect. Polymers (Basel) 2023; 15:polym15061438. [PMID: 36987218 PMCID: PMC10051535 DOI: 10.3390/polym15061438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
A significant mechanical properties mismatch between natural bone and the material forming the orthopedic implant device can lead to its failure due to the inhomogeneous loads distribution, resulting in less dense and more fragile bone tissue (known as the stress shielding effect). The addition of nanofibrillated cellulose (NFC) to biocompatible and bioresorbable poly(3-hydroxybutyrate) (PHB) is proposed in order to tailor the PHB mechanical properties to different bone types. Specifically, the proposed approach offers an effective strategy to develop a supporting material, suitable for bone tissue regeneration, where stiffness, mechanical strength, hardness, and impact resistance can be tuned. The desired homogeneous blend formation and fine-tuning of PHB mechanical properties have been achieved thanks to the specific design and synthesis of a PHB/PEG diblock copolymer that is able to compatibilize the two compounds. Moreover, the typical high hydrophobicity of PHB is significantly reduced when NFC is added in presence of the developed diblock copolymer, thus creating a potential cue for supporting bone tissue growth. Hence, the presented outcomes contribute to the medical community development by translating the research results into clinical practice for designing bio-based materials for prosthetic devices.
Collapse
Affiliation(s)
- Martina Ferri
- Department of Civil, Chemical, Environmental and Materials Engineering, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Emanoele Maria Santos Chiromito
- Department of Materials Engineering, Engineering School of São Carlos, University of São Paulo, Av. João Dagnone, 1100, São Carlos 13563-120, SP, Brazil
| | - Antonio Jose Felix de Carvalho
- Department of Materials Engineering, Engineering School of São Carlos, University of São Paulo, Av. João Dagnone, 1100, São Carlos 13563-120, SP, Brazil
| | - Davide Morselli
- Department of Civil, Chemical, Environmental and Materials Engineering, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Micaela Degli Esposti
- Department of Civil, Chemical, Environmental and Materials Engineering, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
- Correspondence: (M.D.E.); (P.F.); Tel.: +39-051-2090363 (M.D.E.); +39-051-2090364 (P.F.)
| | - Paola Fabbri
- Department of Civil, Chemical, Environmental and Materials Engineering, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
- Correspondence: (M.D.E.); (P.F.); Tel.: +39-051-2090363 (M.D.E.); +39-051-2090364 (P.F.)
| |
Collapse
|
8
|
Chiesa I, De Maria C, Ceccarini MR, Mussolin L, Coletta R, Morabito A, Tonin R, Calamai M, Morrone A, Beccari T, Valentini L. 3D Printing Silk-Based Bioresorbable Piezoelectric Self-Adhesive Holey Structures for In Vivo Monitoring on Soft Tissues. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19253-19264. [PMID: 35438960 PMCID: PMC9073835 DOI: 10.1021/acsami.2c04078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Flexible and biocompatible adhesives with sensing capabilities can be integrated onto human body and organ surfaces, characterized by complex geometries, thus having the potential to sense their physiological stimuli offering monitoring and diagnosis of a wide spectrum of diseases. The challenges in this innovative field are the following: (i) the coupling method between the smart adhesive and the soft human substrates, (ii) the bioresorbable behavior of the material, and (iii) the electrical exchange with the substrate. Here, we introduce a multifunctional composite by mixing silk fibroin, featuring piezoelectric properties, with a soluble plant-derived polyphenol (i.e., chestnut tannin) modified with graphene nanoplatelets. This material behaves as a glue on different substrates and gives rise to high elongation at break, conformability, and adhesive performances to gastrointestinal tissues in a rat model and favors the printability via extrusion-based 3D printing. Exploiting these properties, we designed a bioresorbable 3D printed flexible and self-adhesive piezoelectric device that senses the motility once applied onto a phantom intestine and the hand gesture by signal translation. Experimental results also include the biocompatibility study using gastrointestinal cells. These findings could have applicability in animal model studies, and, thanks to the bioresorbable behavior of the materials, such an adhesive device could be used for monitoring the motility of the gastrointestinal tract and for the diagnosis of motility disorders.
Collapse
Affiliation(s)
- Irene Chiesa
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Carmelo De Maria
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | | | - Lorenzo Mussolin
- Department
of Physics and Geology, University of Perugia, Perugia 06123, Italy
| | - Riccardo Coletta
- Department
of Pediatric Surgery, Meyer Children’s
Hospital, Viale Pieraccini
24, Firenze 50139, Italy
| | - Antonino Morabito
- Department
of Pediatric Surgery, Meyer Children’s
Hospital, Viale Pieraccini
24, Firenze 50139, Italy
- Dipartimento
Neuroscienze, Psicologia, Area del Farmaco e della Salute del Bambino
Neurofarba, Università degli Studi
di Firenze, Viale Pieraccini
6, Firenze 50121, Italy
| | - Rodolfo Tonin
- Molecular
and Cell Biology Laboratory, Paediatric Neurology Unit and Laboratories,
Neuroscience Department, Meyer Children’s
Hospital, Firenze 50121, Italy
| | - Martino Calamai
- European
Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto
Fiorentino 50019, Italy
- National
Institute of Optics-National Research Council (CNR-INO), Sesto Fiorentino 50019, Italy
| | - Amelia Morrone
- Dipartimento
Neuroscienze, Psicologia, Area del Farmaco e della Salute del Bambino
Neurofarba, Università degli Studi
di Firenze, Viale Pieraccini
6, Firenze 50121, Italy
- Molecular
and Cell Biology Laboratory, Paediatric Neurology Unit and Laboratories,
Neuroscience Department, Meyer Children’s
Hospital, Firenze 50121, Italy
| | - Tommaso Beccari
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia 06123, Italy
| | - Luca Valentini
- Civil
and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, Terni 05100, Italy
- Italian Consortium
for Science and Technology of Materials (INSTM), Via Giusti 9, Firenze 50121, Italy
| |
Collapse
|
9
|
Chen CK, Chen PW, Wang HJ, Yeh MY. Alkyl Chain Length Effects of Imidazolium Ionic Liquids on Electrical and Mechanical Performances of Polyacrylamide/Alginate-Based Hydrogels. Gels 2021; 7:164. [PMID: 34698178 PMCID: PMC8544473 DOI: 10.3390/gels7040164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Conductive hydrogels with stretchable, flexible and wearable properties have made significant contributions in the area of modern electronics. The polyacrylamide/alginate hydrogels are one of the potential emerging materials for application in a diverse range of fields because of their high stretch and toughness. However, most researchers focus on the investigation of their mechanical and swelling behaviors, and the adhesion and effects of the ionic liquids on the conductivities of polyacrylamide/alginate hydrogels are much less explored. Herein, methacrylated lysine and different alkyl chain substituted imidazole-based monomers (IMCx, x = 2, 4, 6 and 8) were introduced to prepare a series of novel pAMAL-IMCx-Ca hydrogels. We systematically investigated their macroscopic and microscopic properties through tensile tests, electrochemical impedance spectra and scanning electron microscopy, as well as Fourier transform infrared spectroscopy, and demonstrated that an alkyl chain length of the IMCx plays an important role in the designing of hydrogel strain sensors. The experiment result shows that the hexyl chains of IMC6 can effectively entangle with LysMA through hydrophobic and electrostatic interactions, which significantly enhance the mechanical strength of the hydrogels. Furthermore, the different strain rates and the durability of the pAMAL-IMC6-Ca hydrogel were investigated and the relative resistance responses remain almost the same in both conditions, making it a potential candidate for wearable strain sensors.
Collapse
Affiliation(s)
- Chen-Kang Chen
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.-K.C.); (P.-W.C.); (H.-J.W.)
| | - Po-Wen Chen
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.-K.C.); (P.-W.C.); (H.-J.W.)
| | - Huan-Jung Wang
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.-K.C.); (P.-W.C.); (H.-J.W.)
| | - Mei-Yu Yeh
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan; (C.-K.C.); (P.-W.C.); (H.-J.W.)
- Center for Nano Technology, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan
| |
Collapse
|
10
|
Valentini L, Ceccarini MR, Verdejo R, Tondi G, Beccari T. Stretchable, Bio-Compatible, Antioxidant and Self-Powering Adhesives from Soluble Silk Fibroin and Vegetal Polyphenols Exfoliated Graphite. NANOMATERIALS 2021; 11:nano11092352. [PMID: 34578666 PMCID: PMC8472279 DOI: 10.3390/nano11092352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022]
Abstract
The development of bio-glues is still a challenging task, regarding adhesion on wet surfaces; often, high performance and adaption to complex geometries need to be combined in one material. Here, we report biocompatible adhesives obtained by blending regenerated silk (RS) with a soluble plant-derived polyphenol (i.e., chestnut tannin) that was also used to exfoliate graphite to obtain graphene-based RS/tannin (G-RS/T) composites. The resultant G-RS/T hybrid material exhibited outstanding stretchability (i.e., 400%) and high shear strength (i.e., 180 kPa), superior to that of commercial bio-glues, and showed sealant properties for tissue approximation. Moreover, we showed how such nanocomposites exhibit electromechanical properties that could potentially be used for the realization of green and eco-friendly piezoelectric devices. Finally, we demonstrate the in vitro glue’s biocompatibility and anti-oxidant properties that enable their utilization in clinical applications.
Collapse
Affiliation(s)
- Luca Valentini
- Civil & Environmental Engineering Department, Università degli Studi di Perugia and INSTM Research Unit, Strada di Pentima 4, 05100 Terni, Italy
- Correspondence: ; Tel.: +39-0744-492924
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (T.B.)
| | - Raquel Verdejo
- Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, 28006 Madrid, Spain;
| | - Gianluca Tondi
- Department of Land Environment Agriculture and Forestry, University of Padua, 35020 Legnaro, Italy;
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (T.B.)
| |
Collapse
|