1
|
Ou H, Li P, Jiang C, Liu Y, Luo Y, Xing Z, Zeb A, Wu Y, Lin X. Synergistic enhancement of Ni 2P anode for high lithium/sodium storage by N, P, S triply-doping and soft template-assisted strategy. J Colloid Interface Sci 2025; 678:365-377. [PMID: 39208764 DOI: 10.1016/j.jcis.2024.08.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Transition metal phosphides have demonstrated excellent performance in the field of energy conversion and storage, where nickel phosphide is one of the most prominent type of phosphides. However, achieving long cycle life with higher specific capacity in the case of Ni2P is still a great challenge. In this study, the composition and structure of Ni2P composites are rationally and precisely adjusted by heteroatoms doping and micelle-assisted methods to attain high capacity for longer cycles at high rate. Among all studied combinations, nickel phosphide particles anchored to triple heteroatom (N, P, S) doped carbon network skeleton (Ni2P@NPS) exhibited specific capacities of 727.3, 586.6, and 321.5 mA h g-1 after 1000 cycles at 1, 2 and 6 A g-1 for lithium-ion batteries (LIBs) and 230.1 mA h g-1 at 1 A g-1 for sodium-ion batteries (SIBs) after 560 cycles. The introduction of heteroatoms optimized the electronic structure of the electrode materials and promoted mass and charge transfer, while triple-heteroatom doped carbon substrates and uniformly dispersed spherical structures formed an active three-dimensional conductive network structure that provided a stronger driving force and richer channels for Li+/Na+ transport. Theoretical calculations showed that the high content of pyrrole nitrogen as well as the additional sulfur ensured improved electrical conductivity and enhanced ion adsorption performance. This study encourages further research into the synergistic effect of N, P, S co-doping materials for improving Li+/Na+ storage and the exploration of other heteroatom co-doping systems.
Collapse
Affiliation(s)
- Hong Ou
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Ping Li
- Department of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, PR China
| | - Canyu Jiang
- Guangdong Country Garden School, Foshan, Guangdong 528312, PR China
| | - Yiqing Liu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Yuhong Luo
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, PR China.
| | - Zhenyu Xing
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Akif Zeb
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Yongbo Wu
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, PR China
| | - Xiaoming Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Wang L, Li Q, Chen Z, Wang Y, Li Y, Chai J, Han N, Tang B, Rui Y, Jiang L. Metal Phosphide Anodes in Sodium-Ion Batteries: Latest Applications and Progress. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310426. [PMID: 38229551 DOI: 10.1002/smll.202310426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/06/2024] [Indexed: 01/18/2024]
Abstract
Sodium-ion batteries (SIBs), as the next-generation high-performance electrochemical energy storage devices, have attracted widespread attention due to their cost-effectiveness and wide geographical distribution of sodium. As a crucial component of the structure of SIBs, the anode material plays a crucial role in determining its electrochemical performance. Significantly, metal phosphide exhibits remarkable application prospects as an anode material for SIBs because of its low redox potential and high theoretical capacity. However, due to volume expansion limitations and other factors, the rate and cycling performance of metal phosphides have gradually declined. To address these challenges, various viable solutions have been explored. In this paper, the recent research progress of metal phosphide materials for SIBs is systematically reviewed, including the synthesis strategy of metal phosphide, the storage mechanism of sodium ions, and the application of metal phosphide in electrochemical aspects. In addition, future challenges and opportunities based on current developments are presented.
Collapse
Affiliation(s)
- Longzhen Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Qingmeng Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Zhiyuan Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Yiting Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Yifei Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Jiali Chai
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Bohejin Tang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Yichuan Rui
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Lei Jiang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Heverlee, B-3001, Belgium
| |
Collapse
|
3
|
Sun H, Chu X, Zhu Y, Wang B, Wang G, Bai J. Heterointerface construction of carbon coated cobalt-iron phosphide space-confined in hollow porous carbon balls to promote internal/external sodium storage kinetics. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Yang Y, Xia J, Guan X, Wei Z, Yu J, Zhang S, Xing Y, Yang P. In Situ Growth of CoP Nanosheet Arrays on Carbon Cloth as Binder-Free Electrode for High-Performance Flexible Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204970. [PMID: 36323589 DOI: 10.1002/smll.202204970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Cobalt phosphide (CoP) is considered as one of the most promising candidates for anode in lithium-ion batteries (LIBs) owing to its low-cost, abundant availability, and high theoretical capacity. However, problems of low conductivity, heavy aggregation, and volume change of CoP, hinder its practical applicability. In this study, a binder-free electrode is successfully prepared by growing CoP nanosheets arrays directly on a carbon cloth (CC) via a facile one-step electrodeposition followed by an in situ phosphorization strategy. The CoP@CC anode exhibits good interfacial bonding between the CoP and CC, which can improve the conductivity of the integrated electrode. More importantly, the 3D network structure composed of CoP nanosheets and CC provides sufficient space to alleviate the volume expansion of CoP and shorten the electron/ion transport paths. Moreover, the support of CC effectively prevents the agglomeration of CoP. Based on these advantages, when CoP@CC is paired with the NCM523 cathode, the full cell delivers a high discharge capacity 919.6 mAh g-1 (2.1 mAh cm-2 ) after 200 cycles at 0.5 A g-1 . The feasibility and safety of producing pouch cells are also explored, which show good flexibility and safety despite rigorous strikes (mechanical damage and severe deformations), implying a great potential for practical applications.
Collapse
Affiliation(s)
- Yang Yang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jun Xia
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xianggang Guan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Ziwei Wei
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jiayu Yu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Shichao Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Yalan Xing
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Puheng Yang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
- School of Physics Science and Nuclear Energy Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
5
|
Chen F, Xu J, Wang S, Lv Y, Li Y, Chen X, Xia A, Li Y, Wu J, Ma L. Phosphorus/Phosphide-Based Materials for Alkali Metal-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200740. [PMID: 35396797 PMCID: PMC9189659 DOI: 10.1002/advs.202200740] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Indexed: 05/16/2023]
Abstract
Phosphorus- and phosphide-based materials with remarkable physicochemical properties and low costs have attracted significant attention as the anodes of alkali metal (e.g., Li, Na, K, Mg, Ca)-ion batteries (AIBs). However, the low electrical conductivity and large volume expansion of these materials during electrochemical reactions inhibit their practical applications. To solve these problems, various promising solutions have been explored and utilized. In this review, the recent progress in AIBs using phosphorus- and phosphide-based materials is summarized. Thereafter, the in-depth working principles of diverse AIBs are discussed and predicted. Representative works with design concepts, construction approaches, engineering strategies, special functions, and electrochemical results are listed and discussed in detail. Finally, the existing challenges and issues are concluded and analyzed, and future perspectives and research directions are given. This review can provide new guidance for the future design and practical applications of phosphorus- and phosphide-based materials used in AIBs.
Collapse
Affiliation(s)
- Fangzheng Chen
- Low‐Carbon New Materials Research CenterLow‐Carbon Research Institute, School of Materials Science and EngineeringAnhui University of TechnologyMaanshan243002China
| | - Jie Xu
- Low‐Carbon New Materials Research CenterLow‐Carbon Research Institute, School of Materials Science and EngineeringAnhui University of TechnologyMaanshan243002China
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal MaterialsMinistry of EducationMaanshan243002China
| | - Shanying Wang
- Low‐Carbon New Materials Research CenterLow‐Carbon Research Institute, School of Materials Science and EngineeringAnhui University of TechnologyMaanshan243002China
| | - Yaohui Lv
- Low‐Carbon New Materials Research CenterLow‐Carbon Research Institute, School of Materials Science and EngineeringAnhui University of TechnologyMaanshan243002China
| | - Yang Li
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and Technology (HKUST)Clear Water BayHong Kong999077China
| | - Xiang Chen
- Low‐Carbon New Materials Research CenterLow‐Carbon Research Institute, School of Materials Science and EngineeringAnhui University of TechnologyMaanshan243002China
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal MaterialsMinistry of EducationMaanshan243002China
| | - Ailin Xia
- Low‐Carbon New Materials Research CenterLow‐Carbon Research Institute, School of Materials Science and EngineeringAnhui University of TechnologyMaanshan243002China
| | - Yongtao Li
- Low‐Carbon New Materials Research CenterLow‐Carbon Research Institute, School of Materials Science and EngineeringAnhui University of TechnologyMaanshan243002China
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal MaterialsMinistry of EducationMaanshan243002China
| | - Junxiong Wu
- College of Environmental Science and EngineeringFujian Normal UniversityFuzhouFujian350000China
| | - Lianbo Ma
- Low‐Carbon New Materials Research CenterLow‐Carbon Research Institute, School of Materials Science and EngineeringAnhui University of TechnologyMaanshan243002China
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal MaterialsMinistry of EducationMaanshan243002China
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and Technology (HKUST)Clear Water BayHong Kong999077China
| |
Collapse
|
6
|
Liu J, Zhou T, Wang Y, Han T, Hu C, Zhang H. A novel nanosphere-in-nanotube iron phosphide Li-ion battery anode displaying a long cycle life, recoverable rate-performance, and temperature tolerance. NANOSCALE 2021; 13:15624-15630. [PMID: 34515284 DOI: 10.1039/d1nr05294b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Currently, non-ideal anodes restricts the development of long-term stable Li-ion batteries. Several currently available high-capacity anode candidates are suffering from a large volumetric change during charge and discharge and non-stable solid interphase formation. Here, we develop a novel nanosphere-confined one-dimensional yolk-shell anode taking iron phosphide (FeP) as a demonstrating case study. Multiple FeP nanospheres are encapsulated inside an FeP nanotube through a magnetic field-assisted and templated approach, forming a nanosphere-in-nanotube yolk-shell (NNYS) structure. After long-term 1000 cycles at 2 A g-1, the NNYS FeP anode shows a good capacity of 560 mA h g-1, and a coulombic efficiency of 99.8%. A recoverable rate-performance is also obtained after three rounds of tests. Furthermore, the capacities and coulombic efficiency remain stable at temperatures of -10 °C and 45 °C, respectively, indicating good potential for use under different conditions.
Collapse
Affiliation(s)
- Jinyun Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| | - Ting Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| | - Yan Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| | - Tianli Han
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
| | - Chaoquan Hu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huigang Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|