1
|
Liu H, Yin H, Luo Z, Wang X. Integrating chemistry knowledge in large language models via prompt engineering. Synth Syst Biotechnol 2024; 10:23-38. [PMID: 39206087 PMCID: PMC11350497 DOI: 10.1016/j.synbio.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
This paper presents a study on the integration of domain-specific knowledge in prompt engineering to enhance the performance of large language models (LLMs) in scientific domains. The proposed domain-knowledge embedded prompt engineering method outperforms traditional prompt engineering strategies on various metrics, including capability, accuracy, F1 score, and hallucination drop. The effectiveness of the method is demonstrated through case studies on complex materials including the MacMillan catalyst, paclitaxel, and lithium cobalt oxide. The results suggest that domain-knowledge prompts can guide LLMs to generate more accurate and relevant responses, highlighting the potential of LLMs as powerful tools for scientific discovery and innovation when equipped with domain-specific prompts. The study also discusses limitations and future directions for domain-specific prompt engineering development.
Collapse
Affiliation(s)
- Hongxuan Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haoyu Yin
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhiyao Luo
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, United Kingdom
| | - Xiaonan Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Kumar K, Sharma D, Thakur D, Karmakar A, Yang HW, Jayakumar J, Banik S, Jou JH, Ghosh S. Sterically Crowded Donor-Rich Imidazole Systems as Hole Transport Materials for Solution-Processed OLEDs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5137-5150. [PMID: 38412064 DOI: 10.1021/acs.langmuir.3c03059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Imidazole, being an interesting dinitrogenic five-membered heterocyclic core, has been widely explored during the last several decades for developing various fascinating materials. Among the different domains where imidazole-based materials find wide applications, the area of optoelectronics has seen an overwhelming growth of functional imidazole derivatives developed through remarkable design and synthesis strategies. The present work reports a design approach for integrating bulky donor units at the four terminals of an imidazole core, leading to the development of sterically populated imidazole-based molecular platforms with interesting structural features. Rationally chosen starting substrates led to the incorporation of a bulky donor at the four terminals of the imidazole core. In addition, homo- and cofunctional molecular systems were synthesized through a suitable combination of initial ingredients. Our approach was extended to develop a series of four molecular systems, i.e., Cz3PhI, Cz4I, Cz3PzI, and TPA3CzI, containing carbazole, phenothiazine, and triphenylamine as known efficient donors at the periphery. Given their interesting structural features, three sterically crowded molecules (Cz4I, Cz3PzI, and TPA3CzI) were screened by using DFT and TD-DFT calculations to investigate their potential as hole transport materials (HTMs) for optoelectronic devices. The theoretical studies on several aspects including hole reorganization and exciton binding energies, ionization potential, etc., revealed their potential as possible candidates for the hole transport layer of OLEDs. Single-crystal analysis of Cz3PhI and Cz3PzI established interesting structural features including twisted geometries, which may help attain high triplet energy. Finally, the importance of theoretical predictions was established by fabricating two solution-process green phosphorescent OLED devices using TPA3CzI and Cz3PzI as HTMs. The fabricated devices exhibited good EQE/PE and CE of ∼15%/56 lm/W/58 cd/A and ∼13%/47 lm/W/50 cd/A, respectively, at 100 cd/m2.
Collapse
Affiliation(s)
- Krishan Kumar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Dipanshu Sharma
- Department of Materials Science and Engineering, National Tsing Hua University 101, Sec. 2, Guang-Fu Road, Hsinchu 30013, Taiwan, R.O.C
| | - Diksha Thakur
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Avenida Rosvisco Pais, Lisboa 1049-001, Portugal
| | - Hong-Wei Yang
- Department of Materials Science and Engineering, National Tsing Hua University 101, Sec. 2, Guang-Fu Road, Hsinchu 30013, Taiwan, R.O.C
| | - Jayachandran Jayakumar
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Guang-Fu Road, Hsinchu 30013, Taiwan, R.O.C
| | - Subrata Banik
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University 101, Sec. 2, Guang-Fu Road, Hsinchu 30013, Taiwan, R.O.C
| | - Subrata Ghosh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
3
|
Zhou B, Qin L, Wang P, Chen Z, Zang J, Zhang J, Wen Y, Chen R. Fabrication of ZnO dual electron transport layer via atomic layer deposition for highly stable and efficient CsPbBr 3perovskite nanocrystals light-emitting diodes. NANOTECHNOLOGY 2022; 34:025203. [PMID: 36215973 DOI: 10.1088/1361-6528/ac98ce] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Electron transport layers (ETLs) are important components of high-performance all-inorganic perovskite nanocrystals light-emitting diodes (PNCs-LED). Herein, atomic layer deposition (ALD) of inorganic ZnO layer is combined to the organic 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi) to form dual ETLs to enhance both the efficiency and stability of PNCs-LED simultaneously. Optimization of ZnO thickness suggested that 10 cycles ALD yields the best performance of the devices. The external quantum efficiency of the device reaches to 7.21% with a low turn-on voltage (2.4 V). Impressively, the dual ETL PNCs-LED realizes maximumT50lifetime of 761 h at the initial luminance of 100 nit, which is one of the top lifetimes among PNCs-LEDs up to now. The improved performance of dual ETL PNCs-LED is mainly due to the improved charge transport balance with favorable energy level matching. These findings present a promising strategy to modify the function layer via ALD to achieve both highly efficient and stable PNCs-LED.
Collapse
Affiliation(s)
- Binze Zhou
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Le Qin
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Pengfei Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, People's Republic of China
| | - Zhuo Chen
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, People's Republic of China
| | - Jianfeng Zang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, People's Republic of China
| | - Jianbing Zhang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, People's Republic of China
| | - Yanwei Wen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China, Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518067, People's Republic of China
| | - Rong Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
4
|
Highly Efficient Solution-Processed Blue Phosphorescent Organic Light-Emitting Diodes Based on Co-Dopant and Co-Host System. Molecules 2022; 27:molecules27206882. [PMID: 36296475 PMCID: PMC9611992 DOI: 10.3390/molecules27206882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022] Open
Abstract
The low-lying HOMO level of the blue emitter and the interfacial miscibility of organic materials result in inferior hole injection, and long exciton lifetime leads to triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA), so the efficiencies of blue phosphorescent organic light-emitting diodes (PhOLEDs) are still unsatisfactory. Herein, we design co-host and co-dopant structures to improve the efficiency of blue PhOLEDs by means of solution processing. TcTa acts as hole transport ladder due to its high-lying HOMO level, and bipolar mCPPO1 helps to balance carriers’ distribution and weaken TPA. Besides the efficient FIr6, which acts as the dominant blue dopant, FCNIrPic was introduced as the second dopant, whose higher HOMO level accelerates hole injection and high triplet energy facilitates energy transfer. An interesting phenomenon caused by microcavity effect between anode and cathode was observed. With increasing thickness of ETL, peak position of electroluminescence (EL) spectrum red shifts gradually. Once the thickness of ETL exceeded 140 nm, emission peak blue-shifts went back to its original position. Finally, the maximum current efficiency (CE), power efficiency (PE), and external quantum efficiency (EQE) of blue phosphorescent organic light-emitting diode (PhOLED) went up to 20.47 cd/A, 11.96 lm/W, and 11.62%, respectively.
Collapse
|
5
|
De J, Sarkar I, Yadav RAK, Bala I, Gupta SP, Siddiqui I, Jou JH, Pal SK. Luminescent columnar discotics as highly efficient emitters in pure deep-blue OLEDs with an external quantum efficiency of 4.7. SOFT MATTER 2022; 18:4214-4219. [PMID: 34935025 DOI: 10.1039/d1sm01558c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Development of materials that serve as efficient blue emitters in solution-processable OLEDs is challenging. In this study, we report three derivatives of C3-symmetric 1,3,5-tris(thien-2-yl)benzene-based highly luminescent room temperature columnar discotic liquid crystals (DLCs) suitable as solid-state emitters in OLED devices. When employed in solution-processed OLEDs, one of the derivatives having the highest photoluminescence quantum yield exhibited a maximum EQE of 4.7% and CIE chromaticity of (0.16, 0.05) corresponding to the ultra deep-blue emission. The finding is sufficiently significant in the field of DLC-based deep blue emitters.
Collapse
Affiliation(s)
- Joydip De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli-140306, India.
| | - Ishan Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli-140306, India.
| | - Rohit Ashok Kumar Yadav
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Indu Bala
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli-140306, India.
| | | | - Iram Siddiqui
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, SAS Nagar, Knowledge City, Manauli-140306, India.
| |
Collapse
|
6
|
Abroshan H, Kwak HS, An Y, Brown C, Chandrasekaran A, Winget P, Halls MD. Active Learning Accelerates Design and Optimization of Hole-Transporting Materials for Organic Electronics. Front Chem 2022; 9:800371. [PMID: 35111731 PMCID: PMC8802167 DOI: 10.3389/fchem.2021.800371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/20/2021] [Indexed: 01/26/2023] Open
Abstract
Data-driven methods are receiving increasing attention to accelerate materials design and discovery for organic light-emitting diodes (OLEDs). Machine learning (ML) has enabled high-throughput screening of materials properties to suggest new candidates for organic electronics. However, building reliable predictive ML models requires creating and managing a high volume of data that adequately address the complexity of materials' chemical space. In this regard, active learning (AL) has emerged as a powerful strategy to efficiently navigate the search space by prioritizing the decision-making process for unexplored data. This approach allows a more systematic mechanism to identify promising candidates by minimizing the number of computations required to explore an extensive materials library with diverse variables and parameters. In this paper, we applied a workflow of AL that accounts for multiple optoelectronic parameters to identify materials candidates for hole-transport layers (HTL) in OLEDs. Results of this work pave the way for efficient screening of materials for organic electronics with superior efficiencies before laborious simulations, synthesis, and device fabrication.
Collapse
Affiliation(s)
| | | | - Yuling An
- Schrödinger, Inc., New York, NY, United States
| | | | | | - Paul Winget
- Schrödinger, Inc., New York, NY, United States
| | | |
Collapse
|
7
|
Singh K, Siddiqui I, Sridharan V, Kumar Yadav RA, Jou JH, Adhikari D. Aggregation-Induced Enhanced Emission-Active Zinc(II) β-Diketiminate Complexes Enabling High-Performance Solution-Processable OLEDs. Inorg Chem 2021; 60:19128-19135. [PMID: 34865472 DOI: 10.1021/acs.inorgchem.1c02926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Earth-abundant and cheaper zinc-based organometallic molecules as luminophores are drawing significant research attention for solid-state lighting devices. In this paper, we report two air-stable zinc complexes, where the zinc is coordinated to two sterically encumbered β-diketiminate ligands in a tetrahedral geometry. In such a geometry, eight phenyl/aryl rings from the ligand backbones are oriented in a propeller shape, augmenting the restricted rotation of the putative rings. Such an architecture harnesses aggregation-induced emission behavior with an excellent solid-state emission property. The rigidity of these molecules reduces the possibility of non-radiative transitions and makes them excellent fluorescence emitters. Both molecules exhibit electroluminescence (EL) in the yellowish-green region of the visible spectrum. We have utilized these molecules as emitters to fabricate multilayered organic light-emitting diode (OLED) devices. The emitter Zn-I in host m-MTDATA exhibits EL with a maximum external quantum efficiency of 4.4%. Among the handful of zinc-based OLEDs, the performance of this emitter is very commendable with power and current efficacies of 15.2 lm W-1 and 12.1 cd A-1, respectively, along with a brightness of 2426 cd m-2.
Collapse
Affiliation(s)
- Kirti Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Iram Siddiqui
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Vidhyalakshmi Sridharan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| | - Rohit Ashok Kumar Yadav
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar 140306, India
| |
Collapse
|
8
|
Omar ÖH, Del Cueto M, Nematiaram T, Troisi A. High-throughput virtual screening for organic electronics: a comparative study of alternative strategies. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:13557-13583. [PMID: 34745630 PMCID: PMC8515942 DOI: 10.1039/d1tc03256a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/13/2021] [Indexed: 06/01/2023]
Abstract
We present a review of the field of high-throughput virtual screening for organic electronics materials focusing on the sequence of methodological choices that determine each virtual screening protocol. These choices are present in all high-throughput virtual screenings and addressing them systematically will lead to optimised workflows and improve their applicability. We consider the range of properties that can be computed and illustrate how their accuracy can be determined depending on the quality and size of the experimental datasets. The approaches to generate candidates for virtual screening are also extremely varied and their relative strengths and weaknesses are discussed. The analysis of high-throughput virtual screening is almost never limited to the identification of top candidates and often new patterns and structure-property relations are the most interesting findings of such searches. The review reveals a very dynamic field constantly adapting to match an evolving landscape of applications, methodologies and datasets.
Collapse
Affiliation(s)
- Ömer H Omar
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Marcos Del Cueto
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | | | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| |
Collapse
|