1
|
Lin XB, Wu CY, Han BY, Lee YC, Lin YF, Li SR, Sun SS, Li CT. Anion Effect on the Cu II-Neocuproine Mediator and Its Electrocatalysts for Dye-Sensitized Solar Cells: Polymeric Chalcogenides of PEDOT-PEDTT and [Ag 2(SePh) 2] n. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61820-61831. [PMID: 39303063 DOI: 10.1021/acsami.4c08861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The synthetical methodology for the [Cu(dmp)2]2+/1+ (dmp = 2,9-dimethyl-1,10-phenanthroline; neocuproine) complexes has been systematically investigated by using various copper precursors, including CuCl2, Cu(NO3)2, and Cu(ClO4)2. After an anion exchange to trifluoromethanesulfonimide (TFSI), the tetra-coordinated CuII(dmp)2(TFSI)2-Cu(ClO4)2 (7.43%) outperformed the penta-coordinated CuII(dmp)2(TFSI)(NO3)-Cu(NO3)2 (4.30%) and CuII(dmp)2(TFSI)(Cl)-CuCl2. Polymeric chalcogenides, including a conducting copolymeric electrode of PEDOT-PEDTT [PEDOT = poly(3,4-ethylenedioxythiophene); PEDTT = poly(3,4-ethylenedithiothiophene)] and a coordination polymeric electrode of silver bezeneselenolate ([Ag2(SePh)2]n; mithrene), are introduced as the electrocatalysts for [Cu(dmp)2]2+/1+ for the first time. After optimization, dye-sensitized solar cells (DSSCs) based on carbon cloth (CC)/AgSePh-30 (10.18%) showed superior electrocatalytic ability compared to the benchmark CC/Pt (7.43%) due to numerous active sites provided by electron-donating Se atoms, high film roughness, and bottom-up 2D charge transfer routes. The DSSC based on CC/PEDTT-50 (10.38%) also outperformed CC/Pt due to numerous active sites provided by electron-donating S atoms and proper energy band structure. This work sheds light on the future design and synthesis in Cu-complex mediators and functional polymeric chalcogenides for high-performance DSSCs.
Collapse
Affiliation(s)
- Xin-Bei Lin
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Road, Taipei 11677, Taiwan
| | - Chih-Ya Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Road, Taipei 11677, Taiwan
| | - Bo-Yu Han
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Road, Taipei 11677, Taiwan
| | - Yu-Chien Lee
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Road, Taipei 11677, Taiwan
| | - Yin-Fan Lin
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Road, Taipei 11677, Taiwan
| | - Sie-Rong Li
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Shih-Sheng Sun
- Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
| | - Chun-Ting Li
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Road, Taipei 11677, Taiwan
| |
Collapse
|
2
|
Chen X, Chen S, Wang D, Qiu Y, Chen Z, Yang H, Yang Q, Yin Z, Pan C. The Influence of Molecular Weights on Dispersion and Thermoelectric Performance of Alkoxy Side-Chain Polythiophene/Carbon Nanotube Composite Materials. Polymers (Basel) 2024; 16:2444. [PMID: 39274077 PMCID: PMC11397576 DOI: 10.3390/polym16172444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/16/2024] Open
Abstract
In the development of wearable electronic devices, the composite modification of conductive polymers and single-walled carbon nanotubes (SWCNTs) has become a burgeoning research area. This study presents the synthesis of a novel polythiophene derivative, poly(3-alkoxythiophene) (P3(TEG)T), with alkoxy side chains. Different molecular weight variants of P3(TEG)T (P1-P4) were prepared and combined with SWCNTs to form composite materials. Density functional theory (DFT) calculations revealed a reduced bandgap for P3(TEG)T. Raman spectroscopy demonstrated π-π interactions between P3(TEG)T and SWCNTs, facilitating the dispersion of single-walled carbon nanotubes and the formation of a continuous conductive network. Among the composite films, P4/SWCNTs-0.9 exhibited the highest thermoelectric performance, with a power factor (PF) value of 449.50 μW m-1 K-2. The fabricated flexible thermoelectric device achieved an output power of 3976.92 nW at 50 K, with a tensile strength of 59.34 MPa for P4/SWCNTs. Our findings highlight the strong interfacial interactions between P3(TEG)T and SWCNTs in the composite material, providing an effective charge transfer pathway. Furthermore, an improvement in the tensile performance was observed with an increase in the molecular weight of the polymer used in the composite, offering a viable platform for the development of high-performance flexible organic thermoelectric materials.
Collapse
Affiliation(s)
- Xiaogang Chen
- College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shihong Chen
- College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dagang Wang
- College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yongfu Qiu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhongming Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Haixin Yang
- College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qing Yang
- College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zijian Yin
- College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chengjun Pan
- College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Velusamy A, Chen Y, Lin M, Afraj SN, Liu J, Chen M, Liu C. Diselenophene-Dithioalkylthiophene Based Quinoidal Small Molecules for Ambipolar Organic Field Effect Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305361. [PMID: 38095532 PMCID: PMC10916611 DOI: 10.1002/advs.202305361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/26/2023] [Indexed: 03/07/2024]
Abstract
This work presents a series of novel quinoidal organic semiconductors based on diselenophene-dithioalkylthiophene (DSpDST) conjugated cores with various side-chain lengths (-thiohexyl, -thiodecyl, and -thiotetradecyl, designated DSpDSTQ-6, DSpDSTQ-10, and DSpDSTQ-14, respectively). The purpose of this research is to develop solution-processable organic semiconductors using dicyanomethylene end-capped organic small molecules for organic field effect transistors (OFETs) application. The physical, electrochemical, and electrical properties of these new DSpDSTQs are systematically studied, along with their performance in OFETs and thin film morphologies. Additionally, the molecular structures of DSpDSTQ are determined through density functional theory (DFT) calculations and single-crystal X-ray diffraction analysis. The results reveal the presence of intramolecular S (alkyl)···Se (selenophene) interactions, which result in a planar SR-containing DSpDSTQ core, thereby promoting extended π-orbital interactions and efficient charge transport in the OFETs. Moreover, the influence of thioalkyl side chain length on surface morphologies and microstructures is investigated. Remarkably, the compound with the shortest thioalkyl chain, DSpDSTQ-6, demonstrates ambipolar carrier transport with the highest electron and hole mobilities of 0.334 and 0.463 cm2 V-1 s-1 , respectively. These findings highlight the excellence of ambipolar characteristics of solution-processable OFETs based on DSpDSTQs even under ambient conditions.
Collapse
Affiliation(s)
- Arulmozhi Velusamy
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Yen‐Yu Chen
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Meng‐Hao Lin
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Shakil N. Afraj
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Jia‐Hao Liu
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Ming‐Chou Chen
- Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic ModulesNational Central UniversityTaoyuan32001Taiwan
| | - Cheng‐Liang Liu
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| |
Collapse
|
4
|
Watanabe S, Nishio H, Oyaizu K. Facile synthesis of telechelic poly(phenylene sulfide)s by means of electron-deficient aromatic sulfonium electrophiles. RSC Adv 2023; 13:32363-32370. [PMID: 37928850 PMCID: PMC10623243 DOI: 10.1039/d3ra06262g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
We report the facile synthesis of telechelic poly(phenylene sulfide) (PPS) derivatives bearing functional groups at both termini. α,ω-Dihalogenated dimethyl-substituted PPS were obtained in high yield with a high degree of end-functionalization by using soluble poly(2,6-dimethyl-1,4-phenylenesulfide) (PMPS) and 4,4'-dihalogenated diphenyl disulfide (X-DPS, X = Cl, Br) as a precursor and an end-capping agent, respectively. Further end-functionalization is achieved through cross-coupling reactions; particularly, the Kumada-Tamao cross-coupling reaction of bromo-terminated telechelic PMPS and a vinylated Grignard reagent afforded end-vinylated PMPS with thermosetting properties. This synthetic approach can be applied to the preparation of various aromatic telechelic polymers with the desired structures and functionalities.
Collapse
Affiliation(s)
- Seigo Watanabe
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University Tokyo 169-8555 Japan
| | - Hiromichi Nishio
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University Tokyo 169-8555 Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry and Research Institute for Science and Engineering, Waseda University Tokyo 169-8555 Japan
| |
Collapse
|
5
|
Marcial-Hernandez R, Giacalone S, Neal WG, Lee CS, Gilhooly-Finn PA, Mastroianni G, Meli D, Wu R, Rivnay J, Palma M, Nielsen CB. Aqueous processing of organic semiconductors enabled by stable nanoparticles with built-in surfactants. NANOSCALE 2023; 15:6793-6801. [PMID: 36946985 DOI: 10.1039/d2nr06024h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The introduction of oligoether side chains onto a polymer backbone can help to stabilise polymeric dispersions in water without the necessity of surfactants or additives when conjugated polymer nanoparticles are prepared. A series of poly(3-hexylthiophene) (P3HT) derivatives with different content of a polar thiophene derivative 3-((2-methoxyethoxy)methyl)thiophene was interrogated to find the effect of the polar chains on the stability of the formed nanoparticles, as well as their structural, optical, electrochemical, and electrical properties. Findings indicated that incorporation of 10-20 percent of the polar side chain led to particles that are stable over a period of 42 days, with constant particle size and polydispersity, however the particles from the polymer with 30 percent polar side chain showed aggregation effects. The polymer dispersions showed a stronger solid-like behaviour in water with decreasing polar side chain content, while thin film deposition from water was found to afford globular morphologies and crystallites with more isotropic orientation compared to conventional solution-processed films. As a proof-of-principle, field-effect transistors were fabricated directly from the aqueous dispersions demonstrating that polymers with hydrophilic moieties can be processed in water without the requirement of surfactants.
Collapse
Affiliation(s)
| | - Sofia Giacalone
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - William G Neal
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Chang-Seuk Lee
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Peter A Gilhooly-Finn
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Giulia Mastroianni
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Dilara Meli
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, USA
| | - Matteo Palma
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Christian B Nielsen
- Department of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
6
|
Chang Y, Wu YS, Tung SH, Chen WC, Chueh CC, Liu CL. N-Type Doping of Naphthalenediimide-Based Random Donor-Acceptor Copolymers to Enhance Transistor Performance and Structural Crystallinity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15745-15757. [PMID: 36920493 DOI: 10.1021/acsami.2c23067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
An integrated strategy of molecular design and conjugated polymer doping is proposed to improve the electronic characteristics for organic field effect transistor (OFET) applications. Here, a series of soluble naphthalene diimide (NDI)-based random donor-acceptor copolymers with selenophene π-conjugated linkers and four acceptors with different electron-withdrawing strengths (named as rNDI-N/S/NN/SS) are synthesized, characterized, and used for OFETs. N-type doping of NDI-based random copolymers using (12a,18a)-5,6,12,12a,13,18,18a,19-octahydro-5,6-dimethyl-13,18[1',2']-benzenobisbenzimidazo[1,2-b:2',1'-d]benzo[i][2.5]benzodiazocine potassium triflate adduct (DMBI-BDZC) is successfully demonstrated. The undoped rNDI-N, rNDI-NN, and rNDI-SS samples exhibit ambipolar charge transport, while rNDI-S presents only a unipolar n-type characteristic. Doping with DMBI-BDZC significantly modulates the performance of rNDI-N/S OFETs, with a 3- to 6-fold increase in electron mobility (μe) for 1 wt % doped device due to simultaneous trap mitigation, lower contact resistance (RC), and activation energy (EA), and enhanced crystallinity and edge-on orientation for charge transport. However, the doping of intrinsic pro-quinoidal rNDI-NN/SS films exhibits unchanged or even reduced device performance. These findings allow us to manipulate the energy levels by developing conjugated copolymers based on various acceptors and quinoids and to optimize the dopant-polymer semiconductor interactions and their impacts on the film morphology and molecular orientation for enhanced charge transport.
Collapse
Affiliation(s)
- Yun Chang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ying-Sheng Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Matsuda M, Lin CY, Enomoto K, Lin YC, Chen WC, Higashihara T. Impact of the Heteroatoms on Mobility–Stretchability Properties of n-Type Semiconducting Polymers with Conjugation Break Spacers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Megumi Matsuda
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Chia-Yu Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kazushi Enomoto
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yan-Cheng Lin
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
8
|
Li J, Yang K, Wang D, Liu B, Wang Y, Jeong SY, Chen Z, Woo HY, Guo X. Regioisomeric Cyanated Polythiophenes Bearing Polar Side Chains for n-Type Organic Thermoelectrics. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| | - Kun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Dong Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| | - Sang Young Jeong
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Zhicai Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| | - Han Young Woo
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong, China
| |
Collapse
|
9
|
Wu WN, Tu TH, Pai CH, Cheng KH, Tung SH, Chan YT, Liu CL. Metallo-Supramolecular Rod–Coil Block Copolymer Thin Films for Stretchable Organic Field Effect Transistor Application. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Wei-Ni Wu
- Department of Materials Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Tsung-Han Tu
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Chiao-Hsuan Pai
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Kuan-Heng Cheng
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| |
Collapse
|
10
|
Novel adamantane substituted polythiophenes as competitors to Poly(3-Hexylthiophene). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Ye S, Lotocki V, Xu H, Seferos DS. Group 16 conjugated polymers based on furan, thiophene, selenophene, and tellurophene. Chem Soc Rev 2022; 51:6442-6474. [PMID: 35843215 DOI: 10.1039/d2cs00139j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five-membered aromatic rings containing Group 16 elements (O, S, Se, and Te), also referred as chalcogenophenes, are ubiquitous building blocks for π-conjugated polymers (CPs). Among these, polythiophenes have been established as a model system to study the interplay between molecular structure, solid-state organization, and electronic performance. The judicious substitution of alternative heteroatoms into polythiophenes is a promising strategy for tuning their properties and improving the performance of derived organic electronic devices, thus leading to the recent abundance of CPs containing furan, selenophene, and tellurophene. In this review, we first discuss the current status of Kumada, Negishi, Murahashi, Suzuki-Miyaura, and direct arylation polymerizations, representing the best routes to access well-defined chalcogenophene-containing homopolymers and copolymers. The self-assembly, optical, solid-state, and electronic properties of these polymers and their influence on device performance are then summarized. In addition, we highlight post-polymerization modifications as effective methods to transform polychalcogenophene backbones or side chains in ways that are unobtainable by direct polymerization. Finally, the major challenges and future outlook in this field are presented.
Collapse
Affiliation(s)
- Shuyang Ye
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Victor Lotocki
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Hao Xu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada. .,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
12
|
The Adsorption and Electropolymerization of Terthiophene on Au(111) Electrode – Probed by in situ STM. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
A DFT analysis of electronic, reactivity, and NLO responses of a reactive orange dye: the role of Hartree-Fock exchange corrections. J Mol Model 2022; 28:85. [PMID: 35377023 DOI: 10.1007/s00894-022-05035-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/19/2022] [Indexed: 10/18/2022]
Abstract
An experimental and theoretical study based on DFT/TD-DFT approximations is presented to understand the nature of electronic excitations, reactivity, and nonlinear optical (NLO) properties of reactive orange 16 dye (RO16), an azo chromophore widely used in textile and pharmacological industries. The results show that the solvent has a considerable influence on the electronic properties of the material. According to experimental results, the absorption spectrum is formed by four intense transitions, which have been identified as [Formula: see text] states using TD-DFT calculations. However, the TD-DFT results reveal a weak [Formula: see text] in the low-lying spectral region. Continuum models of solvation indicate that these states suffer from bathochromic (ca. 15 nm) and hypsochromic shifts (ca. 4 nm), respectively. However, the expected blue shift for the absorption [Formula: see text] is only described using long-range or dispersion-corrected DFT methods. RO16 is classified as a strong electrophilic system, with electrophilicity ω > 1.5 eV. Concerning the nucleophilicity parameter (N), from vacuum to solvent, the environment is active and changes the nucleophilic status from strong to moderate nucleophile (2.0 ≤ N ≤ 3.0 eV). The results also suggest that all electrical constants are strongly dependent on long-range and Hartree-Fock exchange contributions, and the absence of these interactions gives results far from reality. In particular, the results for the NLO response show that the chromophore presents a potential application in this field with a low refractive index and first hyperpolarizability ca. 214 times bigger than the value usually reported for urea (β = 0.34 × 10- 30 esu), which is a standard NLO material. Concerning the solvent effects, the results indicate that the polarizability increases [Formula: see text] esu from gas to solvent while the first hyperpolarizability is calculated as [Formula: see text] esu, ca. 180%, regarding the vacuum. The results suggest RO16 is a potential compound in NLO applications. Graphical Abstract The frontier molecular orbitals, and the inverse relation between the energy-gap (Egap) and the first hyperpolarizability (β).
Collapse
|
14
|
Zhang Q, Chang M, Fan Z, Deng L, Lu Y. Direct (hetero)arylation polymerization, electrochemical and optical properties of regioregular 3-substituted polythiophenes with alkylsulphanyl and alkylsulfonyl groups. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Sasaki Y, Lyu X, Tang W, Wu H, Minami T. Polythiophene-Based Chemical Sensors: Toward On-Site Supramolecular Analytical Devices. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Wei Tang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hao Wu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
16
|
|
17
|
Nguyen TD, Nguyen VH, Song J, An J, Truong NT, Dang CH, Im C. Molecular Weight-Dependent Physical and Photovoltaic Properties of Poly(3-alkylthiophene)s with Butyl, Hexyl, and Octyl Side-Chains. Polymers (Basel) 2021; 13:3440. [PMID: 34641255 PMCID: PMC8512356 DOI: 10.3390/polym13193440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/17/2022] Open
Abstract
A series of poly-3-alkylthiophenes (P3ATs) with butyl (P3BT), hexyl (P3HT), and octyl (P3OT) side-chains and well-defined molecular weights (MWs) were synthesized using Grignard metathesis polymerization. The MWs of P3HTs and P3OTs obtained via gel permeation chromatography agreed well with the calculated MWs ranging from approximately 10 to 70 kDa. Differential scanning calorimetry results showed that the crystalline melting temperature increased with increasing MWs and decreasing alkyl side-chain length, whereas the crystallinity of the P3ATs increased with the growth of MWs. An MW-dependent red shift was observed in the UV-Vis and photoluminiscence spectra of the P3ATs in solution, which might be a strong evidence for the extended effective conjugation occurring in polymers with longer chain lengths. The photoluminescence quantum yields of pristine films in all polymers were lower than those of the diluted solutions, whereas they were higher than those of the phenyl-C61-butyric acid methyl ester-blended films. The UV-Vis spectra of the films showed fine structures with pronounced red shifts, and the interchain interaction-induced features were weakly dependent on the MW but significantly dependent on the alkyl side-chain length. The photovoltaic device performances of the P3BT and P3HT samples significantly improved upon blending with a fullerene derivative and subsequent annealing, whereas those of P3OTs mostly degraded, particularly after annealing. The optimal power conversion efficiencies of P3BT, P3HT, and P3OT were 2.4%, 3.6%, and 1.5%, respectively, after annealing with MWs of ~11, ~39, and ~38 kDa, respectively.
Collapse
Affiliation(s)
- Thanh-Danh Nguyen
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (T.-D.N.); (V.-H.N.); (J.S.); (J.A.); (N.-T.T.)
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 5, Ho Chi Minh City 70000, Vietnam;
| | - Van-Hai Nguyen
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (T.-D.N.); (V.-H.N.); (J.S.); (J.A.); (N.-T.T.)
| | - Jongwoo Song
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (T.-D.N.); (V.-H.N.); (J.S.); (J.A.); (N.-T.T.)
| | - Jongdeok An
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (T.-D.N.); (V.-H.N.); (J.S.); (J.A.); (N.-T.T.)
| | - Ngoc-Thuan Truong
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (T.-D.N.); (V.-H.N.); (J.S.); (J.A.); (N.-T.T.)
| | - Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 5, Ho Chi Minh City 70000, Vietnam;
| | - Chan Im
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (T.-D.N.); (V.-H.N.); (J.S.); (J.A.); (N.-T.T.)
| |
Collapse
|