1
|
Akter R, Shah SS, Ehsan MA, Shaikh MN, Zahir MH, Aziz MA, Ahammad AJS. Transition-metal-based Catalysts for Electrochemical Synthesis of Ammonia by Nitrogen Reduction Reaction: Advancing the Green Ammonia Economy. Chem Asian J 2024; 19:e202300797. [PMID: 37812018 DOI: 10.1002/asia.202300797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
Ammonia (NH3), a cornerstone in the chemical industry, has historically been pivotal for producing various valuable products, notably fertilizers. Its significance is further underscored in the modern energy landscape, where NH3 is seen as a promising medium for hydrogen storage and transportation. However, the conventional Haber-Bosch process, which accounts for approximately 170 million ton of NH3 produced globally each year, is energy-intensive and environmentally damaging. The electrochemical nitrogen reduction reaction (NRR) emerges as a sustainable alternative that operates in ambient conditions and uses renewable energy sources. Despite its potential, the NRR faces challenges, including the inherent stability of nitrogen and its competition with the hydrogen evolution reaction. Transition metals, especially ruthenium (Ru) and molybdenum (Mo), have demonstrated promise as catalysts, enhancing the efficiency of the NRR. Ru excels in catalytic activity, while Mo offers robustness. Strategies like heteroatom doping are being pursued to mitigate NRR challenges, especially the competing hydrogen evolution reaction. This review delves into the advancements of Ru and Mo-based catalysts for electrochemical ammonia synthesis, elucidating the NRR mechanisms, and championing the transition towards a greener ammonia economy. It also seeks to elucidate the core principles underpinning the NRR mechanism. This shift aims not only to address challenges inherent to traditional production methods but also to align with the overarching goals of global sustainability.
Collapse
Affiliation(s)
- Riva Akter
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Muhammad Ali Ehsan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Hasan Zahir
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
2
|
Xiao S, Zhang D, Wang G, Zhou T, Wang N. Density Functional Theory Study of Triple Transition Metal Cluster Anchored on the C 2N Monolayer for Nitrogen Reduction Reactions. Molecules 2024; 29:3314. [PMID: 39064893 PMCID: PMC11280456 DOI: 10.3390/molecules29143314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The electrochemical nitrogen reduction reaction (NRR) is an attractive pathway for producing ammonia under ambient conditions. The development of efficient catalysts for nitrogen fixation in electrochemical NRRs has become increasingly important, but it remains challenging due to the need to address the issues of activity and selectivity. Herein, using density functional theory (DFT), we explore ten kinds of triple transition metal atoms (M3 = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) anchored on the C2N monolayer (M3-C2N) as NRR electrocatalysts. The negative binding energies of M3 clusters on C2N mean that the triple transition metal clusters can be stably anchored on the N6 cavity of the C2N structure. As the first step of the NRR, the adsorption configurations of N2 show that the N2 on M3-C2N catalysts can be stably adsorbed in a side-on mode, except for Zn3-C2N. Moreover, the extended N-N bond length and electronic structure indicate that the N2 molecule has been fully activated on the M3-C2N surface. The results of limiting potential screen out the four M3-C2N catalysts (Co3-C2N, Cr3-C2N, Fe3-C2N, and Ni3-C2N) that have a superior electrochemical NRR performance, and the corresponding values are -0.61 V, -0.67 V, -0.63 V, and -0.66 V, respectively, which are smaller than those on Ru(0001). In addition, the detailed NRR mechanism studied shows that the alternating and enzymatic mechanisms of association pathways on Co3-C2N, Cr3-C2N, Fe3-C2N, and Ni3-C2N are more energetically favorable. In the end, the catalytic selectivity for NRR on M3-C2N is investigated through the performance of a hydrogen evolution reaction (HER) on them. We find that Co3-C2N, Cr3-C2N, Fe3-C2N, and Ni3-C2N catalysts possess a high catalytic activity for NRR and exhibit a strong capability of suppressing the competitive HER. Our findings provide a new strategy for designing NRR catalysts with high catalytic activity and selectivity.
Collapse
Affiliation(s)
- Shifa Xiao
- College of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Daoqing Zhang
- College of Physics Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Guangzhao Wang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Tianhang Zhou
- College of Carbon Neutrality Future Technology, China University of Petroleum (Beijing), Beijing 102249, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Ning Wang
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| |
Collapse
|
3
|
Qian Y, Zhang F, Luo X, Zhong Y, Kang DJ, Hu Y. Synthesis and Electrocatalytic Applications of Layer-Structured Metal Chalcogenides Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310526. [PMID: 38221685 DOI: 10.1002/smll.202310526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/28/2023] [Indexed: 01/16/2024]
Abstract
Featured with the attractive properties such as large surface area, unique atomic layer thickness, excellent electronic conductivity, and superior catalytic activity, layered metal chalcogenides (LMCs) have received considerable research attention in electrocatalytic applications. In this review, the approaches developed to synthesize LMCs-based electrocatalysts are summarized. Recent progress in LMCs-based composites for electrochemical energy conversion applications including oxygen reduction reaction, carbon dioxide reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, overall water splitting, and nitrogen reduction reaction is reviewed, and the potential opportunities and practical obstacles for the development of LMCs-based composites as high-performing active substances for electrocatalytic applications are also discussed. This review may provide an inspiring guidance for developing high-performance LMCs for electrochemical energy conversion applications.
Collapse
Affiliation(s)
- Yongteng Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang, 321007, P. R. China
| | - Fangfang Zhang
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang, 321007, P. R. China
| | - Xiaohui Luo
- College of Pharmacy, Jinhua Polytechnic, Jinhua, Zhejiang, 321007, P. R. China
| | - Yijun Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Dae Joon Kang
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, P. R. China
| |
Collapse
|
4
|
Yang L, Han H, Sun L, Wu J, Wang M. The Advances, Challenges, and Perspectives on Electrocatalytic Reduction of Nitrogenous Substances to Ammonia: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7647. [PMID: 38138789 PMCID: PMC10744934 DOI: 10.3390/ma16247647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Ammonia (NH3) is considered to be a critical chemical feedstock in agriculture, industry, and other fields. However, conventional Haber-Bosch (HB) ammonia (NH3) production suffers from high energy consumption, harsh reaction conditions, and large carbon dioxide emissions. Despite the emergence of electrocatalytic reduction of nitrogenous substances to NH3 under ambient conditions as a new frontier, there are several bottleneck problems that impede the commercialization process. These include low catalytic efficiency, competition with the hydrogen evolution reaction, and difficulties in breaking the N≡N triple bond. In this review, we explore the recent advances in electrocatalytic NH3 synthesis, using nitrogen and nitrate as reactants. We focus on the contribution of the catalyst design, specifically based on molecular-catalyst interaction mechanisms, as well as chemical bond breaking and directional coupling mechanisms, to address the aforementioned problems during electrocatalytic NH3 synthesis. Finally, we discuss the relevant opportunities and challenges in this field.
Collapse
Affiliation(s)
- Liu Yang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China; (L.Y.); (H.H.); (L.S.)
| | - Huichun Han
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China; (L.Y.); (H.H.); (L.S.)
| | - Lan Sun
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China; (L.Y.); (H.H.); (L.S.)
| | - Jinxiong Wu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, China
| | - Meng Wang
- School of Materials Engineering, Xi’an Aeronautical University, 259 West Second Ring, Xi’an 710077, China
| |
Collapse
|
5
|
Zhang Y, Nie K, Yi L, Li B, Yuan Y, Liu Z, Huang W. Recent Advances in Engineering of 2D Materials-Based Heterostructures for Electrochemical Energy Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302301. [PMID: 37743245 PMCID: PMC10625098 DOI: 10.1002/advs.202302301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/11/2023] [Indexed: 09/26/2023]
Abstract
2D materials, such as graphene, transition metal dichalcogenides, black phosphorus, layered double hydroxides, and MXene, have exhibited broad application prospects in electrochemical energy conversion due to their unique structures and electronic properties. Recently, the engineering of heterostructures based on 2D materials, including 2D/0D, 2D/1D, 2D/2D, and 2D/3D, has shown the potential to produce synergistic and heterointerface effects, overcoming the inherent restrictions of 2D materials and thus elevating the electrocatalytic performance to the next level. In this review, recent studies are systematically summarized on heterostructures based on 2D materials for advanced electrochemical energy conversion, including water splitting, CO2 reduction reaction, N2 reduction reaction, etc. Additionally, preparation methods are introduced and novel properties of various types of heterostructures based on 2D materials are discussed. Furthermore, the reaction principles and intrinsic mechanisms behind the excellent performance of these heterostructures are evaluated. Finally, insights are provided into the challenges and perspectives regarding the future engineering of heterostructures based on 2D materials for further advancements in electrochemical energy conversion.
Collapse
Affiliation(s)
- Yujia Zhang
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Kunkun Nie
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Lixin Yi
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Binjie Li
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Yanling Yuan
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Zhengqing Liu
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| | - Wei Huang
- Frontiers Science Center for Flexible ElectronicsXi'an Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'an710129China
| |
Collapse
|
6
|
Thapa L, Retna Raj C. Nitrogen Electrocatalysis: Electrolyte Engineering Strategies to Boost Faradaic Efficiency. CHEMSUSCHEM 2023; 16:e202300465. [PMID: 37401159 DOI: 10.1002/cssc.202300465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
The electrochemical activation of dinitrogen at ambient temperature and pressure for the synthesis of ammonia has drawn increasing attention. The faradaic efficiency (FE) as well as ammonia yield in the electrochemical synthesis is far from reaching the requirement of industrial-scale production. In aqueous electrolytes, the competing electron-consuming hydrogen evolution reaction (HER) and poor solubility of nitrogen are the two major bottlenecks. As the electrochemical reduction of nitrogen involves proton-coupled electron transfer reaction, rationally engineered electrolytes are required to boost FE and ammonia yield. In this Review, we comprehensively summarize various electrolyte engineering strategies to boost the FE in aqueous and non-aqueous medium and suggest possible approaches to further improve the performance. In aqueous medium, the performance can be improved by altering the electrolyte pH, transport velocity of protons, and water activity. Other strategies involve the use of hybrid and water-in-salt electrolytes, ionic liquids, and non-aqueous electrolytes. Existing aqueous electrolytes are not ideal for industrial-scale production. Suppression of HER and enhanced nitrogen solubility have been observed with hybrid and non-aqueous electrolytes. The engineered electrolytes are very promising though the electrochemical activation has several challenges. The outcome of lithium-mediated nitrogen reduction reaction with engineered non-aqueous electrolyte is highly encouraging.
Collapse
Affiliation(s)
- Loknath Thapa
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - C Retna Raj
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
7
|
Zhong X, Yuan E, Yang F, Liu Y, Lu H, Yang J, Gao F, Zhou Y, Pan J, Zhu J, Yu C, Zhu C, Yuan A, Ang EH. Optimizing oxygen vacancies through grain boundary engineering to enhance electrocatalytic nitrogen reduction. Proc Natl Acad Sci U S A 2023; 120:e2306673120. [PMID: 37748073 PMCID: PMC10556631 DOI: 10.1073/pnas.2306673120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/09/2023] [Indexed: 09/27/2023] Open
Abstract
Electrocatalytic nitrogen reduction is a challenging process that requires achieving high ammonia yield rate and reasonable faradaic efficiency. To address this issue, this study developed a catalyst by in situ anchoring interfacial intergrown ultrafine MoO2 nanograins on N-doped carbon fibers. By optimizing the thermal treatment conditions, an abundant number of grain boundaries were generated between MoO2 nanograins, which led to an increased fraction of oxygen vacancies. This, in turn, improved the transfer of electrons, resulting in the creation of highly active reactive sites and efficient nitrogen trapping. The resulting optimal catalyst, MoO2/C700, outperformed commercial MoO2 and state-of-the-art N2 reduction catalysts, with NH3 yield and Faradic efficiency of 173.7 μg h-1 mg-1cat and 27.6%, respectively, under - 0.7 V vs. RHE in 1 M KOH electrolyte. In situ X-ray photoelectron spectroscopy characterization and density functional theory calculation validated the electronic structure effect and advantage of N2 adsorption over oxygen vacancy, revealing the dominant interplay of N2 and oxygen vacancy and generating electronic transfer between nitrogen and Mo(IV). The study also unveiled the origin of improved activity by correlating with the interfacial effect, demonstrating the big potential for practical N2 reduction applications as the obtained optimal catalyst exhibited appreciable catalytic stability during 60 h of continuous electrolysis. This work demonstrates the feasibility of enhancing electrocatalytic nitrogen reduction by engineering grain boundaries to promote oxygen vacancies, offering a promising avenue for efficient and sustainable ammonia production.
Collapse
Affiliation(s)
- Xiu Zhong
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu212100, China
| | - Enxian Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou225002, China
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu212100, China
| | - Yang Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu212100, China
| | - Hao Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu212100, China
| | - Jun Yang
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang212100, China
| | - Fei Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu212100, China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing211816, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, China
| | - Jiawei Zhu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao266101, China
| | - Chao Yu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu212100, China
| | - Chengzhang Zhu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing211816, China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu212100, China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore637616, Singapore
| |
Collapse
|
8
|
Wen F, Huang X, Li Y, Pang L, Xu Y, Zhang T. Photocatalytic Synthesis of Ammonia from Pinecone Graphite-Phase Carbon Nitride Loaded with MoS 2 Nanosheets as Co-catalysts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37289619 DOI: 10.1021/acs.langmuir.3c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photocatalytic nitrogen fixation is a promising alternative to the Haber-Bosch process to alleviate the energy and environmental crises. Here, we designed a pinecone-shaped graphite-phase carbon nitride (PCN) catalyst supported with MoS2 nanosheets by a supramolecular self-assembly method. The catalyst shows an excellent photocatalytic nitrogen reduction reaction (PNRR) due to the larger specific surface area and the enhancement of visible light owing to the reduced band gap. Under simulated sunlight, the sample of PCN loaded with 5 wt % MoS2 nanosheets (MS5%/PCN) shows a PNRR efficiency of 279.41 μmol g-1 h-1, which is 14.9 times that of bulk graphite-phase carbon nitride (g-C3N4), 4.6 times that of PCN, and 5.4 times that of MoS2, respectively. The unique pinecone-like structure of MS5%/PCN not only improves the ability of light absorption but also assists in the uniform loading of MoS2 nanosheets. Likewise, the existence of MoS2 nanosheets improves the light absorption ability of the catalyst and reduces the impedance of the catalyst. Furthermore, as a co-catalyst, MoS2 nanosheets can efficiently adsorb nitrogen (N2) and serve as active N2 reduction sites. From the perspective of structural design, this work can offer novel solutions for the creation of effective N2-fixing photocatalysts.
Collapse
Affiliation(s)
- Fushan Wen
- College of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580 China
| | - Xiaoli Huang
- College of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580 China
| | - Yajie Li
- College of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580 China
| | - Le Pang
- College of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580 China
| | - Yuan Xu
- College of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580 China
| | - Tao Zhang
- College of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580 China
| |
Collapse
|
9
|
Zheng J, Zhang H, Lv J, Zhang M, Wan J, Gerrits N, Wu A, Lan B, Wang W, Wang S, Tu X, Bogaerts A, Li X. Enhanced NH 3 Synthesis from Air in a Plasma Tandem-Electrocatalysis System Using Plasma-Engraved N-Doped Defective MoS 2. JACS AU 2023; 3:1328-1336. [PMID: 37234124 PMCID: PMC10207100 DOI: 10.1021/jacsau.3c00087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
We have developed a sustainable method to produce NH3 directly from air using a plasma tandem-electrocatalysis system that operates via the N2-NOx-NH3 pathway. To efficiently reduce NO2- to NH3, we propose a novel electrocatalyst consisting of defective N-doped molybdenum sulfide nanosheets on vertical graphene arrays (N-MoS2/VGs). We used a plasma engraving process to form the metallic 1T phase, N doping, and S vacancies in the electrocatalyst simultaneously. Our system exhibited a remarkable NH3 production rate of 7.3 mg h-1 cm-2 at -0.53 V vs RHE, which is almost 100 times higher than the state-of-the-art electrochemical nitrogen reduction reaction and more than double that of other hybrid systems. Moreover, a low energy consumption of only 2.4 MJ molNH3-1 was achieved in this study. Density functional theory calculations revealed that S vacancies and doped N atoms play a dominant role in the selective reduction of NO2- to NH3. This study opens up new avenues for efficient NH3 production using cascade systems.
Collapse
Affiliation(s)
- Jiageng Zheng
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Hao Zhang
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Jiabao Lv
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Meng Zhang
- College
of Optical Science and Engineering, Zhejiang
University, Hangzhou 310027, China
| | - Jieying Wan
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Nick Gerrits
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk, Belgium
| | - Angjian Wu
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Bingru Lan
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| | - Weitao Wang
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Shuangyin Wang
- State
Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xin Tu
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Annemie Bogaerts
- Research
Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk, Belgium
| | - Xiaodong Li
- State
Key Laboratory of Clean Energy Utilization, College of Energy and
Engineering, Academy of Ecological Civilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
10
|
Shi L, Bi S, Qi Y, Ning G, Ye J. Highly efficient metal-free borocarbonitride catalysts for electrochemical reduction of N 2 to NH 3. J Colloid Interface Sci 2023; 641:577-584. [PMID: 36963251 DOI: 10.1016/j.jcis.2023.03.099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) for ammonia (NH3) under ambient conditions is emerging as a potentially sustainable alternative to the traditional, energy-intensive Haber-Bosch process for ammonia production. Currently, metal-based electrocatalysts constitute the majority of reported NRR catalysts. However, they often suffer from the shortcomings of competitive reactions of nitrogen adsorption/activation and hydrogen generation. Therefore, there is an urgent need to develop more environmentally friendly, low energy consumption, and non-polluting high-performance metal-free electrocatalysts. In this study, borocarbonitride (BCN) materials derived from boron imidazolate framework (BIF-20) were used to boost efficient electrochemical nitrogen conversion to ammonia under ambient conditions. The BCN catalyst demonstrated excellent performance in 0.1 M KOH, with an ammonia yield of 21.62 μg h-1 mgcat-1 and a Faradaic efficiency of 9.88% at -0.3 V (Reversible Hydrogen Electrode, RHE). This performance is superior to most metal-free catalysts and even some metal catalysts for NRR. The 15N2/14N2 isotope labeling experiments and density functional theory (DFT) calculations showed that N2 can be adsorbed and converted to NH3 on the surface of BCN, and that the energy barrier can be significantly reduced by structural design for BCN. This work highlights the important role played by the presence of Lewis acid-base pairs in metal-free catalysts for enhancing electrochemical NRR performance.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China
| | - Shengnan Bi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China
| | - Ye Qi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China; Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China.
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China; Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, PR China.
| |
Collapse
|
11
|
Heliso Dolla T, Matthews T, Wendy Maxakato N, Ndungu P, Montini T. Recent advances in transition metal sulfide-based electrocatalysts and photocatalysts for nitrogen fixation. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2022.117049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Chen X, Yin H, Yang X, Zhang W, Xiao D, Lu Z, Zhang Y, Zhang P. Co-Doped Fe 3S 4 Nanoflowers for Boosting Electrocatalytic Nitrogen Fixation to Ammonia under Mild Conditions. Inorg Chem 2022; 61:20123-20132. [PMID: 36441161 DOI: 10.1021/acs.inorgchem.2c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compared with the Haber Bosch process, the electrochemical nitrogen reduction reaction (NRR) under mild conditions provides an alternative and promising route for ammonia synthesis due to its green and sustainable features. However, the great energy barrier to break the stable N≡N bond hinders the practical application of NRR. Though Fe is the only common metal element in all biological nitrogenases in nature, there is still a lack of study on developing highly efficient and low-cost Fe-based catalysts for N2 fixation. Herein, Co-doped Fe3S4 nanoflowers were fabricated as the intended catalyst for NRR. The results indicate that 4% Co-doped Fe3S4 nanoflowers achieve a high Faradaic efficiency of 17% and a NH3 yield rate of 37.5 μg·h-1·mg-1cat. at -0.55 V versus RHE potential in 0.1 M HCl, which is superior to most Fe-based catalysts. The introduction of Co atoms can not only shift the partial density states of Fe3S4 toward the Fermi level but also serve as new active centers to promote N2 absorption, lowering the energy barrier of the potential determination step to accelerate the catalytic process. This work paves a pathway of the morphology and doping engineering for Fe-based electrocatalysts to enhance ammonia synthesis.
Collapse
Affiliation(s)
- Xue Chen
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - Hongfei Yin
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiaoyong Yang
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.,Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Weining Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - Dongdong Xiao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Lu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongzheng Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - Ping Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
13
|
Zhang M, Cui L, Mao Q, Wang Z, Yu H, Xu Y, Li X, Wang L, Wang H. Heterogeneous Pd-PdO mesoporous film for ammonia electrosynthesis. NANOTECHNOLOGY 2022; 33:385703. [PMID: 35667346 DOI: 10.1088/1361-6528/ac75f8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Exploring cost-effective and highly active electrocatalysts is of great significance for sustainable electrochemical NH3synthesis. Palladium (Pd)-based catalysts have been unanimously considered as one of the most efficient catalysts for the nitrogen reduction reaction (NRR). Herein, self-supported mesoporous Pd film with partial oxidation on Ni foam (mPd-PdO/NF) was synthesized through the micelle-assisted chemical replacement method coupled with air oxidation under 260 °C, and the mPd-PdO/NF electrocatalyst exhibited superior NRR performance with the maximum values ofrNH3(24.8 mg h-1mgcat.-1) and FE (16.64%) were obtained at -0.1 V, relative to the single counterparts (mPd/NF and mPdO/NF). It is proposed that both metallic Pd and its oxide domains when co-existing with a phase boundary between them can facilitate nitrogen activation and hydrogenation, resulting in an enhanced NRR performance. This work provides an inspiring strategy for the rational design of highly active and durable metal-metal-oxide nanoarchitectonics for ammonia electrosynthesis.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Lin Cui
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| |
Collapse
|
14
|
Wang B, Yan C, Xu G, Shu X, Lv J, Cui J, Yu D, Bao Z, Wu Y. Electron coupled FeS 2/MoS 2 heterostructure for efficient electrocatalytic ammonia synthesis under ambient conditions. Dalton Trans 2022; 51:9720-9727. [PMID: 35700450 DOI: 10.1039/d2dt01467j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Developing efficient ammonia synthesis technology under ambient conditions is of vital importance. In this work, an FeS2 coupled MoS2 heterostructure with ultrathin features was designed by a one-step hydrothermal process for the electrochemical nitrogen reduction reaction. Density functional theory calculations reveal that the electronic structure of MoS2 greatly changes with the introduction of FeS2. The modulated electronic structure of MoS2 not only exhibits enhanced conductivity but also facilitates the activation of N2 molecules due to its abundant electronic region. The optimized FeS2/MoS2 nanosheet heterostructure achieves a high NH3 yield rate of 2.59 μmol h-1 mg-1 and a FE of 4.63% at -0.3 V vs. RHE. Besides, the well-designed nanocomposite also shows excellent selectivity without N2H4 by-products and exhibits good stability after electrocatalysis for 48 hours.
Collapse
Affiliation(s)
- Bo Wang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| | - Chao Yan
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| | - Guangqing Xu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China
| | - Xia Shu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China
| | - Jun Lv
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China
| | - Jiewu Cui
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China
| | - Dongbo Yu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China
| | - Zhiyong Bao
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China
| | - Yucheng Wu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China. .,Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei, 230009, PR China
| |
Collapse
|
15
|
Shi L, Bi S, Qi Y, He R, Ren K, Zheng L, Wang J, Ning G, Ye J. Anchoring Mo Single-Atom Sites on B/N Codoped Porous Carbon Nanotubes for Electrochemical Reduction of N 2 to NH 3. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Shengnan Bi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Ye Qi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Ruifang He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Ke Ren
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Jiaou Wang
- Institute of High Energy Physics Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
16
|
Li Y, Ma L, Fu Y, Zhang C, Shi Y, Xu Y, Li J. Sulfurization enhancement of FeMoO4 for electrochemical ammonia synthesis with high Faradaic efficiency in neutral media. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Bi 2S 3 quantum dots in situ grown on MoS 2 nanoflowers: An efficient electron-rich interface for photoelectrochemical N 2 reduction. J Colloid Interface Sci 2021; 611:294-305. [PMID: 34954605 DOI: 10.1016/j.jcis.2021.12.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022]
Abstract
Photoelectrocatalysis is considered a green, environmentally friendly, sustainable technology for NH3 synthesis. However, the low efficiency of ammonia synthesis is currently the primary problem in photoelectrochemical nitrogen reduction reactions (PEC NRR). Herein, a nanocomposite BQD/MS developed through the in-situ growth of Bi2S3 quantum dots (BQD) on MoS2 (MS) nanoflowers was demonstrated as an efficient PEC NRR catalyst. Experimental results showed that the strong interaction between BQD and MS modulated the interfacial charge distribution and increased the electron density on the MS side. Meanwhile, the excellent structure of BQD/MS promoted the effective migration of photogenerated electrons from excited BQD to the MS surface. The electron-rich MS reaction interface was conducive to cleaving the stable NN bond and improving the N2 reduction performance. As a result, the prepared BQD/15MS photocathode obtained an excellent Faradaic efficiency of 33.2% and an NH3 yield of 18.5 μg h-1 mg-1, which was about three times that of bare MS.
Collapse
|
18
|
Wang C, Yang M, Wang X, Ma H, Tian Y, Pang H, Tan L, Gao K. Hierarchical CoS 2/MoS 2 flower-like heterostructured arrays derived from polyoxometalates for efficient electrocatalytic nitrogen reduction under ambient conditions. J Colloid Interface Sci 2021; 609:815-824. [PMID: 34839922 DOI: 10.1016/j.jcis.2021.11.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical nitrogen reduction reaction (NRR) has been identified as a prospective alternative for sustainable ammonia production. Developing cost-effective and highly efficient electrocatalysts is critical for NRR under ambient conditions. Herein, the hierarchical cobalt-molybdenum bimetallic sulfide (CoS2/MoS2) flower-like heterostructure assembled from well-aligned nanosheets has been easily fabricated through a one-step strategy. The efficient synergy between different components and the formation of heterostructure in CoS2/MoS2 nanosheets with abundant active sites makes the non-noble metal catalyst CoS2/MoS2 highly effective in NRR, with a high NH3 yield rate (38.61 μg h-1 mgcat.-1), Faradaic efficiency (34.66%), high selectivity (no formation of hydrazine) and excellent long-term stability in 1.0 mol L-1 K2SO4 electrolyte (pH = 3.5) at -0.25 V versus the reversible hydrogen electrode (vs. RHE) under ambient conditions, exceeding much recently reported cobalt- and molybdenum-based materials, even catch up with some noble-metal-based catalyst. Density functional theory (DFT) calculation indicates that the formation of N2H* species on CoS2(200)/MoS2(002) is the rate-determining step via both the alternating and distal pathways with the maximum ΔG values (1.35 eV). These results open up opportunities for the development of efficient non-precious bimetal-based catalysts for NRR.
Collapse
Affiliation(s)
- Chenglong Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Mengle Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Yu Tian
- Institute for Interdisciplinary Quantum Information Technology, Jilin Engineering Normal University, Changchun, 130052, Jilin, China.
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Lichao Tan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Keqing Gao
- Beijing Caron Fiber Engineering Technology Research Center, Beijing Bluestar Technical Center, Beijing 101318, PR China
| |
Collapse
|
19
|
Yang M, Jin Z, Wang C, Cao X, Wang X, Ma H, Pang H, Tan L, Yang G. Fe Foam-Supported FeS 2-MoS 2 Electrocatalyst for N 2 Reduction under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55040-55050. [PMID: 34751553 DOI: 10.1021/acsami.1c16284] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Highly efficient catalysts with enough selectivity and stability are essential for electrochemical nitrogen reduction reaction (e-NRR) that has been considered as a green and sustainable route for synthesis of NH3. In this work, a series of three-dimensional (3D) porous iron foam (abbreviated as IF) self-supported FeS2-MoS2 bimetallic hybrid materials, denoted as FeS2-MoS2@IFx, x = 100, 200, 300, and 400, were designed and synthesized and then directly used as the electrode for the NRR. Interestingly, the IF serving as a slow-releasing iron source together with polyoxomolybdates (NH4)6Mo7O24·4H2O as a Mo source were sulfurized in the presence of thiourea to form self-supported FeS2-MoS2 on IF (abbreviated as FeS2-MoS2@IF200) as an efficient electrocatalyst. Further material characterizations of FeS2-MoS2@IF200 show that flower cluster-like FeS2-MoS2 grows on the 3D skeleton of IF, consisting of interconnected and staggered nanosheets with mesoporous structures. The unique 3D porous structure of FeS2-MoS2@IF together with synergy and interface interactions of bimetallic sulfides would make FeS2-MoS2@IF possess favorable electron transfer tunnels and expose abundant intrinsic active sites in the e-NRR. It is confirmed that synthesized FeS2-MoS2@IF200 shows a remarkable NH3 production rate of 7.1 ×10-10 mol s-1 cm-2 at -0.5 V versus the reversible hydrogen electrode (vs RHE) and an optimal faradaic efficiency of 4.6% at -0.3 V (vs RHE) with outstanding electrochemical and structural stability.
Collapse
Affiliation(s)
- Mengle Yang
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Zhongxin Jin
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
- Key Laboratory of Oilfield Applied Chemistry and Technology, College of Chemical Engineering, Daqing Normal University, Daqing 163712, P. R. China
| | - Chenglong Wang
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Xixian Cao
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Xinming Wang
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Huiyuan Ma
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Haijun Pang
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Lichao Tan
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Guixin Yang
- College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| |
Collapse
|
20
|
Tian L, Zhao J, Ren X, Sun X, Wei Q, Wu D. MoS 2 -Based Catalysts for N 2 Electroreduction to NH 3 - An Overview of MoS 2 Optimization Strategies. ChemistryOpen 2021; 10:1041-1054. [PMID: 34661983 PMCID: PMC8522471 DOI: 10.1002/open.202100196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
The nitrogen reduction reaction (NRR) has become an ideal alternative to the Haber-Bosch process, as NRR possesses, among others, the advantage of operating under ambient conditions and saving energy consumption. The key to efficient NRR is to find a suitable electrocatalyst, which helps to break the strong N≡N bond and improves the reaction selectivity. Molybdenum disulfide (MoS2 ) as an emerging layered two-dimensional material has attracted a mass of attention in various fields. In this minireview, we summarize the optimization strategies of MoS2 -based catalysts which have been developed to improve the weak NRR activity of primitive MoS2 . Some theoretical predictions have also been summarized, which can provide direction for optimizing NRR activity of future MoS2 -based materials. Finally, an outlook about the optimization of MoS2 -based catalysts used in electrochemical N2 fixation are given.
Collapse
Affiliation(s)
- Liang Tian
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
| | - Jinxiu Zhao
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
| | - Xiang Ren
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
| | - Xu Sun
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
| | - Qin Wei
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
| | - Dan Wu
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of ShandongSchool of Chemistry and Chemical EngineeringUniversity of JinanJinan250022ShandongP.R. China
| |
Collapse
|