1
|
He Y, Sun C, Alharbi NS, Yang S, Chen C. High buffering capacity cobalt-doped nickel hydroxide electrode as redox mediator for flexible hydrogen evolution by two-step water electrolysis. J Colloid Interface Sci 2023; 650:151-160. [PMID: 37399751 DOI: 10.1016/j.jcis.2023.06.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
Two-step water electrolysis has been proposed to tackle the ticklish H2/O2 mixture problems in conventional alkaline water electrolysis recently. However, low buffering capacity of pure nickel hydroxide electrode as redox mediator limited practical application of two-step water electrolysis system. A high-capacity redox mediator (RM) is urgently needed to permit consecutive operation of two-step cycles and high-efficiency hydrogen evolution. Consequently, a high mass-loading cobalt-doped nickel hydroxide/active carbon cloth (NiCo-LDH/ACC) RM is synthesized via a facile electrochemical method. The proper Co doping can apparently enhance the conductivity and simultaneously remain the high-capacity of the electrode. Density functional theory results further confirms more negative values in redox potential of NiCo-LDH/ACC than Ni(OH)2/ACC on account of the charge redistribution induced by Co doping, which can prevent the parasitic O2 evolution on RM electrode during decoupled H2 evolution step. As a result, the NiCo-LDH/ACC combined the superiorities of high-capacity Ni(OH)2/ACC and high-conductivity Co(OH)2/ACC, and the NiCo-LDH/ACC with 4:1 ratio of Ni to Co presented a large specific capacitance of 33.52F/cm2 for reversible charge-discharge and high buffering capacity with two-step H2/O2 evolution duration of 1740 s at 10 mA/cm2. The necessary input voltage (2.00 V) of the whole water electrolysis was broken into two smaller ones, 1.41 and 0.38 V, for H2 and O2 production, respectively. NiCo-LDH/ACC provided a favorable electrode material for the practical application of two-step water electrolysis system.
Collapse
Affiliation(s)
- Yuan He
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Chengwei Sun
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Njud S Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shubin Yang
- College of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Changlun Chen
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China; Institute of Energy, Hefei Comprehensive National Science Center(Anhui Energy Laboratory, Hefei 230000, PR China.
| |
Collapse
|
2
|
Lv G, Dai X, Qiao Y, Ren G, Tan Q, Guo SW, Liu YN, Chen Y. Anti-Shedding Nickel-Protection-Layer Boosting an Ultrahigh Loading Carbon Fiber@Co-NiS x Electrode to Deliver Superior Areal/Volumetric/Gravimetric Capacitance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43778-43789. [PMID: 37672756 DOI: 10.1021/acsami.3c08982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Challenges remain to show good capacitive performance while achieving high loadings of active materials for supercapacitors. Trying to realize this version, a nickel-protecting carbon fiber paper@Co-doped NiSx (Ni-CP@Co-NiSx) electrode with high specific gravimetric, areal, and volumetric capacitance is reported in this work. This free-standing electrode is prepared by an electroplating-hydrothermal-electroplating (EHE) three-step method to achieve a high loading of almost 26.7 mg cm-2. The cobalt-doping and nickel-protection strategies effectively decrease the impedance and inhibit the active material dropping from the electrode resulting from the expansion stress, which endows the Ni-CP@Co-NiSx electrode with a high rate and good cycling performance, especially with an ultrahigh specific areal/volumetric/gravimetric capacitance of 53.3 F cm-2/2807 F cm-3/1997 F g-1 at 5 mA cm-2, respectively. Employing activated carbon functionalized with riboflavin (AC/VB2) as a negative electrode, the asymmetric supercapacitor device delivers a very high energy density of up to 60.4 W h kg-1. This work demonstrates that electrodes with a high loading density and excellent performance can be obtained by the combination of the EHE method to adjust the internal conductivity and external structural stability.
Collapse
Affiliation(s)
- Guangjun Lv
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xin Dai
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yide Qiao
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Guopan Ren
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Qiang Tan
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Sheng-Wu Guo
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yong-Ning Liu
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuanzhen Chen
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
3
|
Du X, Lin Z, Wang X, Zhang K, Hu H, Dai S. Electrode Materials, Structural Design, and Storage Mechanisms in Hybrid Supercapacitors. Molecules 2023; 28:6432. [PMID: 37687261 PMCID: PMC10563087 DOI: 10.3390/molecules28176432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Currently, energy storage systems are of great importance in daily life due to our dependence on portable electronic devices and hybrid electric vehicles. Among these energy storage systems, hybrid supercapacitor devices, constructed from a battery-type positive electrode and a capacitor-type negative electrode, have attracted widespread interest due to their potential applications. In general, they have a high energy density, a long cycling life, high safety, and environmental friendliness. This review first addresses the recent developments in state-of-the-art electrode materials, the structural design of electrodes, and the optimization of electrode performance. Then we summarize the possible classification of hybrid supercapacitor devices, and their potential applications. Finally, the fundamental theoretical aspects, charge-storage mechanism, and future developing trends are discussed. This review is intended to provide future research directions for the next generation of high-performance energy storage devices.
Collapse
Affiliation(s)
- Xiaobing Du
- School of Physical and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Zhuanglong Lin
- School of Physical and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoxia Wang
- School of Physical and Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Kaiyou Zhang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Hao Hu
- School of Material Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuge Dai
- School of Physical and Engineering, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
4
|
Moonooswamy KR, Es-Souni M. Towards High Capacitive Performance of Chemically Deposited β-Ni(OH) 2 Nanolamellae Electrode Films. MICROMACHINES 2023; 14:1644. [PMID: 37630180 PMCID: PMC10456634 DOI: 10.3390/mi14081644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Nickel hydroxide β-Ni(OH)2 nanolamellae with high aspect ratios were grown via chemical bath deposition (CBD) on both smooth and textured nickel foil. Depending on bath composition and/or the presence of an additive, thin foam-like nanolamellae to stacked lamellae were obtained. The used CBD method is highly cost-effective, as it is faster and requires less chemicals than typical hydrothermal methods, and it is readily implementable for large-scale production. The influence of surface texture on the final morphology and its effect on capacitive performance was investigated. Herein, we show how subtle changes in the concentration can drastically influence the morphology, which, in turn, drastically impacts the supercapacitive performance of the electrode. Also, the use of a textured surface significantly impacts the morphology, with vastly better cycling performance than samples made on a relatively smooth substrate. The measured specific capacitance values of the best sample were 1961 Fg-1 at 5 mVs-1 and 1998 Fg-1 at 1 Ag-1 under potentiostatic and galvanostatic conditions, respectively. This sample also retained 100% of its initial specific capacitance when discharged at a very high current density of 40 Ag-1. These values are substantially enhanced compared to previously reported data using a nearly analogous method (CBD with higher reagent conc.), with our method, cost-wise, offering economic advantages relative to results obtained with similar materials and other methods (e.g., hydrothermal).
Collapse
Affiliation(s)
| | - Mohammed Es-Souni
- Formerly with Kiel University of Applied Sciences, Grenzstrasse 3, 24149 Kiel, Germany
| |
Collapse
|
5
|
Arbi HM, Vijayalakshmi L, Anil Kumar Y, Alzahmi S, Gopi CVVM, Rusydi A, Obaidat IM. A Facile Two-Step Hydrothermal Synthesis of Co(OH) 2@NiCo 2O 4 Nanosheet Nanocomposites for Supercapacitor Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1981. [PMID: 37446497 DOI: 10.3390/nano13131981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
The composites of NiCo2O4 with unique structures were substantially investigated as promising electrodes. In this study, the unique structured nanosheets anchored on nickel foam (Ni foam) were prepared under the hydrothermal technique of NiCo2O4 and subsequent preparation of Co(OH)2. The Co(OH)2@NiCo2O4 nanosheet composite has demonstrated higher specific capacitances owing to its excellent specific surface region, enhanced rate properties, and outstanding electrical conductivities. Moreover, the electrochemical properties were analyzed in a three-electrode configuration to study the sample material. The as-designed Co(OH)2@NiCo2O4 nanosheet achieves higher specific capacitances of 1308 F·g-1 at 0.5 A·g-1 and notable long cycles with 92.83% capacity retention over 6000 cycles. The Co(OH)2@NiCo2O4 nanosheet electrode exhibits a long life span and high capacitances compared with the NiCo2O4 and Co(OH)2 electrodes, respectively. These outstanding electrochemical properties are mainly because of their porous construction and the synergistic effects between NiCo2O4 and Co(OH)2. Such unique Co(OH)2@NiCo2O4 nanosheets not only display promising applications in renewable storage but also reiterate to scientists of the unlimited potential of high-performance materials.
Collapse
Affiliation(s)
- Hammad Mueen Arbi
- Department of Physics, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - L Vijayalakshmi
- Department of Automotive Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| | - Yedluri Anil Kumar
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Salem Alzahmi
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Chandu V V Muralee Gopi
- Department of Electrical Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Andrivo Rusydi
- Advanced Research Initiative for Correlated-Electron Systems (ARiCES), Department of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Ihab M Obaidat
- Department of Physics, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
6
|
Hou Z, Yu J, Zhou X, Chen Z, Xu J, Zhao B, Gen W, Zhang H. Enhanced performance of hybrid supercapacitors by the synergistic effect of Co(OH) 2 nanosheets and NiMn layered hydroxides. J Colloid Interface Sci 2023; 646:753-762. [PMID: 37229993 DOI: 10.1016/j.jcis.2023.05.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
A self-supporting composite electrode material with a unique three-dimensional structure was synthesized by in-situ growth of nanoscale NiMnLDH-Co(OH)2 on a nickel foam substrate via hydrothermal electrodeposition. The 3D layer of NiMnLDH-Co(OH)2 provided abundant reactive sites for electrochemical reactions, ensuring a solid and conductive skeleton for charge transfer and resulting in significant enhancement of electrochemical performance. The composite material showed a strong synergistic effect between the small nano-sheet Co(OH)2 and NiMnLDH, which promoted reaction kinetics, while the nickel foam substrate acted as a structural conductivity agent, stabilizer, and good conductive medium. The composite electrode showed impressive electrochemical performance, achieving a specific capacitance of 1870F g-1 at 1 A g-1 and retaining 87% capacitance after 3000 charge-discharge cycles, even at a high current density of 10 A g-1. Moreover, the resulting NiMnLDH-Co(OH)2//AC asymmetric supercapacitor (ASC) demonstrated remarkable specific energy of 58.2 Wh kg-1 at a specific power of 1200 W kg-1, along with outstanding cycle stability (89% capacitance retention after 5000 cycles at 10 A g-1). More importantly, DFT calculations reveal that NiMnLDH-Co(OH)2 facilitates charge transfer, accelerating surface redox reactions and increasing specific capacitance. This study presents a promising approach towards designing and developing advanced electrode materials for high-performance supercapacitors.
Collapse
Affiliation(s)
- Zhuoran Hou
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Jie Yu
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Xinsheng Zhou
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Zhibin Chen
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Jiawei Xu
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Boyu Zhao
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Wenbao Gen
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Huayu Zhang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| |
Collapse
|
7
|
Reconstruction of Co/Ni metal-organic-framework based electrode materials with excellent conductivity and integral stability via extended hydrothermal treatment toward improved performance of supercapacitors. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
8
|
Anil Kumar Y, Koyyada G, Kumar Kulurumotlakatla D, Kim JH, Moniruzzaman M, Alzahmi S, Obaidat IM. In Situ Grown Mesoporous Structure of Fe-Dopant@NiCoO X@NF Nanoneedles as an Efficient Supercapacitor Electrode Material. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020292. [PMID: 36678044 PMCID: PMC9866587 DOI: 10.3390/nano13020292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 05/10/2023]
Abstract
In this study, we designed mixed metal oxides with doping compound nano-constructions as efficient electrode materials for supercapacitors (SCs). We successfully prepared the Fe-dopant with NiCoOx grown on nickel foam (Fe-dopant@NiCoOx@NF) through a simple hydrothermal route with annealing procedures. This method provides an easy route for the preparation of high activity SCs for energy storage. Obtained results revealed that the Fe dopant has successfully assisted NiCoOx lattices. The electrochemical properties were investigated in a three-electrode configuration. As a composite electrode for SC characteristics, the Fe-dopant@NiCoOx@NF exhibits notable electrochemical performances with very high specific capacitances of 1965 F g−1 at the current density of 0.5 A g−1, and even higher at 1296 F g−1 and 30 A g−1, respectively, which indicate eminent and greater potential for SCs. Moreover, the Fe-dopant@NiCoOx@NF nanoneedle composite obtains outstanding cycling performances of 95.9% retention over 4500 long cycles. The improved SC activities of Fe-dopant@NiCoOx@NF nanoneedles might be ascribed to the synergistic reactions of the ternary mixed metals, Fe-dopant, and the ordered nanosheets grown on NF. Thus, the Fe-dopant@NiCoOx@NF nanoneedle composite with unique properties could lead to promising SC performance.
Collapse
Affiliation(s)
- Yedluri Anil Kumar
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Ganesh Koyyada
- Department of Chemical Engineering, Yeungnam University, 214-1, Daehak-ro 280, Gyeongsan 712-749, Gyeongbuk-do, Republic of Korea
| | - Dasha Kumar Kulurumotlakatla
- Graduate School of Convergence Science, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Jae Hong Kim
- Department of Chemical Engineering, Yeungnam University, 214-1, Daehak-ro 280, Gyeongsan 712-749, Gyeongbuk-do, Republic of Korea
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
- Correspondence: (M.M.); (S.A.); (I.M.O.)
| | - Salem Alzahmi
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Correspondence: (M.M.); (S.A.); (I.M.O.)
| | - Ihab M. Obaidat
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Department of Physics, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Correspondence: (M.M.); (S.A.); (I.M.O.)
| |
Collapse
|
9
|
Li Y, Ren L, Li Z, Wang T, Wu Z, Wang Z. Harnessing Nickel Phthalocyanine-Based Electrochemical CNT Sponges for Ammonia Synthesis from Nitrate in Contaminated Water. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53884-53892. [PMID: 36420862 DOI: 10.1021/acsami.2c16856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical reduction of nitrate to ammonia is of great interest in water treatment with regard to the conversion of contaminants to value-added products, which requires the development of advanced electrodes to achieve high selectivity, stability, and Faradaic efficiency (FE). Herein, nickel phthalocyanine was homogeneously doped into the fiber of a carbon nanotube (CNT) sponge, enabling the production of an electrode with high electrochemical double-layer capacitance (CDL) and a large electrochemically active surface area (ECSA). The as-prepared NiPc-CNT sponge could achieve 97.6% nitrate removal, 88.4% ammonia selectivity, and 86.8% FE at a nitrate concentration of 50 mg-N L-1 under an optimized potential of -1.2 V (vs Ag/AgCl). Meanwhile, the ammonia selectivity could be further improved at the high nitrate concentration. Density functional theory calculations showed that the exposure of Ni-N4 active sites could effectively suppress the hydrogen evolution reaction and dinitrogen generation, enhancing the ammonia selectivity and Faradaic efficiency. Overall, this work sheds light on the conversion of nitrate to ammonia on the metal phthalocyanine-based electrode, offering a novel strategy for managing nitrate in wastewater.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| | - Lehui Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| | - Zhouyan Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| | - Tianlin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Tongji Advanced Membrane Technology Center, Shanghai 200092, China
| |
Collapse
|
10
|
Arbi HM, Yadav AA, Anil Kumar Y, Moniruzzaman M, Alzahmi S, Obaidat IM. Polypyrrole-Assisted Ag Doping Strategy to Boost Co(OH) 2 Nanosheets on Ni Foam as a Novel Electrode for High-Performance Hybrid Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3982. [PMID: 36432267 PMCID: PMC9697904 DOI: 10.3390/nano12223982] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 05/25/2023]
Abstract
Battery-type electrode materials have attracted much attention as efficient and unique types of materials for hybrid battery supercapacitors due to their multiple redox states and excellent electrical conductivity. Designing composites with high chemical and electrochemical stabilities is beneficial for improving the energy storage capability of battery-type electrode materials. We report on an interfacial engineering strategy to improve the energy storage performance of a Co(OH)2-based battery-type material by constructing polypyrrole-assisted and Ag-doped (Ag-doped@Co(OH)2@polypyrrole) nanosheets (NSs) on a Ni foam using a hydrothermal process that provides richer electroactive sites, efficient charge transportation, and an excellent mechanical stability. Physical characterization results revealed that the subsequent decoration of Ag nanoparticles on Co(OH)2 nanoparticles offered an efficient electrical conductivity as well as a reduced interface adsorption energy of OH- in Co(OH)2 nanoparticles as compared to Co(OH)2@polypyrrole-assisted nanoparticles without Ag particles. The heterogeneous interface of the Ag-doped@Co(OH)2@polypyrrole composite exhibited a high specific capacity of 291.2 mAh g-1 at a current density of 2 A g-1, and showed a good cycling stability after 5000 cycles at 5 A g-1. The specific capacity of the doped electrode was enhanced approximately two-fold compared to that of the pure electrode. Thus, the fabricated Ag-doped@Co(OH)2@polypyrrole nanostructured electrodes can be a potential candidate for fabricating low-cost and high-performance energy storage supercapacitor devices.
Collapse
Affiliation(s)
- Hammad Mueen Arbi
- Department of Physics, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Anuja A. Yadav
- Department of Automotive Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Gyeongbuk, Korea
| | - Yedluri Anil Kumar
- Department of Physics, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Gyeonggi-do, Korea
| | - Salem Alzahmi
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Ihab M. Obaidat
- Department of Physics, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
11
|
Moniruzzaman M, Anil Kumar Y, Pallavolu MR, Arbi HM, Alzahmi S, Obaidat IM. Two-Dimensional Core-Shell Structure of Cobalt-Doped@MnO 2 Nanosheets Grown on Nickel Foam as a Binder-Free Battery-Type Electrode for Supercapacitor Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183187. [PMID: 36144975 PMCID: PMC9505914 DOI: 10.3390/nano12183187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/25/2023]
Abstract
Herein, we present an interfacial engineering strategy to construct an efficient hydrothermal approach by in situ growing cobalt-doped@MnO2 nanocomposite on highly conductive nickel foam (Ni foam) for supercapacitors (SCs). The remarkably high specific surface area of Co dopant provides a larger contacting area for MnO2. In the meantime, the excellent retentions of the hierarchical phase-based pore architecture of the cobalt-doped surface could beneficially condense the electron transportation pathways. In addition, the nickel foam (Ni foam) nanosheets provide charge-transport channels that lead to the outstanding improved electrochemical activities of cobalt-doped@MnO2. The unique cobalt-doped@MnO2 nanocomposite electrode facilitates stable electrochemical architecture, multi-active electrochemical sites, and rapid electro-transports channels; which act as a key factor in enhancing the specific capacitances, stability, and rate capacities. As a result, the cobalt-doped@MnO2 nanocomposite electrode delivered superior electrochemical activities with a specific capacitance of 337.8 F g-1 at 0.5 A g-1; this is greater than pristine MnO2 (277.9 F g-1). The results demonstrate a worthy approach for the designing of high-performance SCs by the grouping of the nanostructured dopant material and metal oxides.
Collapse
Affiliation(s)
- Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Gyeonggi-do, Korea
| | - Yedluri Anil Kumar
- Department of Physics, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | | | - Hammad Mueen Arbi
- Department of Physics, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Salem Alzahmi
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Ihab M. Obaidat
- Department of Physics, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
12
|
Zhang R, Tu Q, Li X, Sun X, Liu X, Chen L. Template-Free Preparation of α-Ni(OH)2 Nanosphere as High-Performance Electrode Material for Advanced Supercapacitor. NANOMATERIALS 2022; 12:nano12132216. [PMID: 35808052 PMCID: PMC9267997 DOI: 10.3390/nano12132216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023]
Abstract
Although it is one of the promising candidates for pseudocapacitance materials, Ni(OH)2 is confronted with poor specific capacitance and inferior cycling stability. The design and construction of three-dimensional (3D) nanosphere structures turns out to be a valid strategy to combat these disadvantages and has attracted tremendous attention. In this paper, a 3D α-Ni(OH)2 nanosphere is prepared via a facile and template-free dynamic refluxing approach. Significantly, the α-Ni(OH)2 nanosphere possesses a high specific surface area (119.4 m2/g) and an abundant porous structure. In addition, the as-obtained α-Ni(OH)2 electrodes are investigated by electrochemical measurements, which exhibit a high specific capacitance of 1243 F/g at 1 A/g in 6 M KOH electrolyte and an acceptable capacitive retention of 40.0% after 1500 charge/discharge cycles at 10 A/g, which can be attributed to the sphere’s unique nanostructure. Furthermore, the as-assembled Ni(OH)2-36//AC asymmetric supercapacitor (ASC) yields a remarkable energy density of 26.50 Wh/kg, with a power density of 0.82 kW/kg. Notably, two ASCs in series can light a 2.5 V red lamp sustainably for more than 60 min, as well as power an LED band with a rated power of 25 W. Hence, this 3D α-Ni(OH)2 nanosphere may raise great potential applications for next-generation energy storage devices.
Collapse
Affiliation(s)
- Rongrong Zhang
- School of Electronic Information Engineering, Jingchu University of Technology, Jingmen 448000, China; (R.Z.); (Q.T.); (X.L.)
| | - Qian Tu
- School of Electronic Information Engineering, Jingchu University of Technology, Jingmen 448000, China; (R.Z.); (Q.T.); (X.L.)
| | - Xianran Li
- School of Electronic Information Engineering, Jingchu University of Technology, Jingmen 448000, China; (R.Z.); (Q.T.); (X.L.)
| | - Xinyu Sun
- School of Electronic Information Engineering, Jingchu University of Technology, Jingmen 448000, China; (R.Z.); (Q.T.); (X.L.)
- Correspondence: (X.S.); (X.L); (L.C.)
| | - Xinghai Liu
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China
- Correspondence: (X.S.); (X.L); (L.C.)
| | - Liangzhe Chen
- School of Electronic Information Engineering, Jingchu University of Technology, Jingmen 448000, China; (R.Z.); (Q.T.); (X.L.)
- Correspondence: (X.S.); (X.L); (L.C.)
| |
Collapse
|
13
|
Design of mesoporous Ni-Co hydroxides nanosheets stabilized by BO2- for pseudocapacitors with superior performance. J Colloid Interface Sci 2022; 614:66-74. [DOI: 10.1016/j.jcis.2022.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/14/2022]
|