1
|
Li Q, Li W. Recent development in surface/interface friction of two-dimensional black phosphorus: A review. Adv Colloid Interface Sci 2025; 340:103464. [PMID: 40043510 DOI: 10.1016/j.cis.2025.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
In 2014, with the development of synthesis and modification methods of black phosphorus (BP), single or multiple layers of BP were stripped into two-dimensional (2D) layered materials, which had great prospects in transistors, batteries, optoelectronics, friction, and lubrication fields. From this point of view, we highlight recent advances in BP research, particularly its tribology and lubrication properties. This paper introduces mainly the research progress of BP in the solid-liquid lubrication fields, and systematically expounds its friction nature from the perspective of macroscopic, microscopic, and computational tribology. Under special conditions (high load, oxidation, etc.), a long-term superlubricity performance of BP could be obtained, which far exceeded other traditional 2D lubrication materials (Gr, MoS2, etc.). There were obvious deficiencies and misunderstandings about the macroscopic and microscopic superlubricity mechanism of BP lubricant, due to the complex and diversified frictional interfaces. The superlubricity mechanism of BP was roughly attributed to the multi-factor coupling or synergistic action in macroscopic, and it was still an open question whether there was secondary transition or contact area difference of the friction interface in microscopic. We believe that these deficiencies and misunderstandings are more ascribed to the lack of research on the interface transition behavior and mechanism during BP friction. We analyze and summarize the challenges and limitations in understanding BP's superlubricity mechanism based on macroscopic and microscopic experiments in the current BP friction research. Finally, we propose a computational tribology-based approach to reconcile discrepancies between macro- and micro-scale experiments.
Collapse
Affiliation(s)
- Qiang Li
- Mechanical and Electrical Engineering Department, Lingnan Normal University, Zhanjiang 524048, China
| | - Wei Li
- Mechanical and Electrical Engineering Department, Lingnan Normal University, Zhanjiang 524048, China.
| |
Collapse
|
2
|
Zhang R, Yu Z, Fan Z, Wang S, Xiang Y, Liu Y, Wang Z. Sensor for a Solid-Liquid Tribological System. SENSORS (BASEL, SWITZERLAND) 2025; 25:437. [PMID: 39860807 PMCID: PMC11769048 DOI: 10.3390/s25020437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Solid-liquid lubrication systems have been widely used to enhance tribological behaviors. Alongside offering exceptional lubrication and wear-resistance performance, the active control of the tribological behavior of lubrication systems in accordance with service conditions is equally critical. To achieve this goal, accurately monitoring the condition of the lubrication system is fundamental. This review article aims to provide a fundamental understanding of different sensors for monitoring the condition of lubricants, as well as the friction and wear properties. Specifically, the sensors suitable for engineering applications are detailed introduced. Through this review, we wish to provide researchers in mechanical engineering with a clear technical overview, which can guide the design of intelligent lubrication systems with suitable sensors.
Collapse
Affiliation(s)
- Ruize Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (R.Z.); (Z.Y.); (Z.F.)
| | - Zeyang Yu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (R.Z.); (Z.Y.); (Z.F.)
| | - Zhikai Fan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (R.Z.); (Z.Y.); (Z.F.)
| | - Shanshan Wang
- Analysis & Testing Center, Beijing Institute of Technology, Beijing 100081, China;
| | - Yihui Xiang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Yanfei Liu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; (R.Z.); (Z.Y.); (Z.F.)
| | - Zhongnan Wang
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
3
|
Wang L, Zhang L, Zheng R, Du C, Yu T, Li K, Bu W, Wang D. Macroscale Superlubrication Achieved with Shear-Thinning Semisolid Lubricants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412257. [PMID: 39548934 DOI: 10.1002/adma.202412257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/27/2024] [Indexed: 11/18/2024]
Abstract
Macrosuperlubric materials are pivotal for reducing friction and wear in engineering applications. However, current solid superlubricants require intricate fabrication and specific conditions (e.g., vacuum or inert atmospheres), while liquid superlubricants are prone to creep, leakage, and corrosion. Here, a novel semisolid subnanometer nanowire (SNW) superlubrication material based on the shear-thinning effect is introduced to overcome these challenges. The SNWs achieve an exceptionally low friction coefficient (0.008-0.009) with silicon nitride (Si3N4) and polytetrafluoroethylene (PTFE) tribo-pairs, demonstrating a brief running-in period (≈39 s) and stable superlubrication over extended friction (12 h, >120 000 cycles). The combination of the shear-thinning network structure mechanism, the adsorption membrane mechanism, and hydrodynamic effects provides a synergistic effect, playing a crucial role in achieving superlubricity. Additionally, SNWs can be combined with various base oils to create semisolid gel lubricants with superlubricating properties. This innovative approach addresses the limitations of current superlubrication systems and introduces a new category of semisolid gel lubricants, significantly expanding the applications of superlubrication materials.
Collapse
Affiliation(s)
- Liucheng Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Center of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liqiang Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266104, China
| | - Runhao Zheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Changhe Du
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 265503, China
| | - Tongtong Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266104, China
| | - Kunpeng Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Daoai Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao, 266104, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 265503, China
| |
Collapse
|
4
|
Boidi G, Ronai B, Heift D, Benini F, Varga M, Righi MC, Rosenkranz A. Tribology of 2D black phosphorus - Current state-of-the-art and future potential. Adv Colloid Interface Sci 2024; 328:103180. [PMID: 38754213 DOI: 10.1016/j.cis.2024.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Since the first mechanical exfoliation of graphene in 2004, the interest in 2D materials has significantly risen due to their outstanding property combination. Multiple 2D materials have been synthesized until today, while black phosphorus (BP) resembles one of their latest additions. The unique properties of BP, especially for electronic and optical devices (i.e., high carrier mobility and electrical conduction, field-effect transistor, layer-dependent bandgap, anisotropic transport), have gained notable attention. However, its layered structure, similar to those of graphene and MoS2, is also advantageous to optimize the friction and wear performance. Moreover, the strong in-plane covalent bonds and weak interlayer van-der-Waals forces favour the formation of low-friction and wear-resistant films. Although BP holds a great tribological potential, the literature to date on this topic is rather scarce. Therefore, it is a timely moment to holistically summarize the synthesis approaches and properties of BP thus guiding interested researchers to use it in mechanical/tribological applications. The existing state-of-the-art regarding tribological research is critically discussed and compared to other 2D materials thus highlighting existing research gaps and paving the way for future research activities.
Collapse
Affiliation(s)
- Guido Boidi
- AC2T research GmbH, Viktor-Kaplan-Straße 2/C, Wiener Neustadt 2700, Austria
| | - Bettina Ronai
- AC2T research GmbH, Viktor-Kaplan-Straße 2/C, Wiener Neustadt 2700, Austria
| | - Dominikus Heift
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston-upon-Thames KT1 2EE, UK
| | - Francesca Benini
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Bologna 40127, Italy
| | - Markus Varga
- AC2T research GmbH, Viktor-Kaplan-Straße 2/C, Wiener Neustadt 2700, Austria
| | - Maria Clelia Righi
- Department of Physics and Astronomy "Augusto Righi", University of Bologna, Bologna 40127, Italy
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Santiago 8370415, Chile.
| |
Collapse
|
5
|
Wang R, Zhang F, Yang K, Xiong Y, Tang J, Chen H, Duan M, Li Z, Zhang H, Xiong B. Review of two-dimensional nanomaterials in tribology: Recent developments, challenges and prospects. Adv Colloid Interface Sci 2023; 321:103004. [PMID: 37837702 DOI: 10.1016/j.cis.2023.103004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
From our ordinary lives to various mechanical systems, friction and wear are often unavoidable phenomena that are heavily responsible for excessive expenditures of nonrenewable energy, the damages and failures of system movement components, as well as immense economic losses. Thus, achieving low friction and high anti-wear performance is critical for minimization of these adverse factors. Two-dimensional (2D) nanomaterials, including transition metal dichalcogenides, single elements, transition metal carbides, nitrides and carbonitrides, hexagonal boron nitride, and metal-organic frameworks have attracted remarkable interests in friction and wear reduction of various applications, owing to their atomic-thin planar morphologies and tribological potential. In this paper, we systematically review the current tribological progress on 2D nanomaterials when used as lubricant additives, reinforcement phases in the coatings and bulk materials, or a major component of superlubricity system. Additionally, the conclusions and prospects on 2D nanomaterials with the existing drawbacks, challenges and future direction in such tribological fields are briefly provided. Finally, we sincerely hope such a review will offer valuable lights for 2D nanomaterial-related researches dedicated on tribology in the future.
Collapse
Affiliation(s)
- Ruili Wang
- Faculty of Engineering, Huanghe Science and Technology University, Zhengzhou 450000, China
| | - Feizhi Zhang
- Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Central South University of Forestry & Technology, Changsha 410004, China; Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China.
| | - Kang Yang
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China.
| | - Yahui Xiong
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Jun Tang
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Hao Chen
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Mengchen Duan
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Zhenjie Li
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Honglei Zhang
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Bangying Xiong
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| |
Collapse
|
6
|
Zhang L, Chen W, Tan X, Jiao J, Guo D, Luo J. Nonmonotonic Effects of Atomic Vacancy Defects on Friction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45455-45464. [PMID: 37722023 DOI: 10.1021/acsami.3c09257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The presence of defects such as vacancies has a significant impact on the frictional properties of 2D materials that are excellent solid lubricants. In this study, we demonstrate that the nonmonotonic effect of Te vacancy defects on the friction of MoTe2 is related to the change in the maximum sliding energy barrier due to the variation in tip position. The experimental results of atomic force microscopy suggest that the friction shows an overall increasing trend with the increase in Te vacancy density, but this variation is nonmonotonic. Molecular dynamics simulations show that the increase in friction force with defect density can be attributed to the large and more sliding energy barriers that the tip has to overcome. Furthermore, the nonmonotonic variation of friction with defect density is dominated by the change of the maximum sliding potential barrier caused by the variation of tip position perpendicular to the sliding direction during the sliding process. Additionally, the uneven charge distribution due to charge transfer occurring at the defect also contributes to the increase in friction. This work shows the mechanism of the effect of Te vacancy defects on the friction of MoTe2, which provides guidance for the modulation of the frictional properties of solid lubricants.
Collapse
Affiliation(s)
- Lina Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Weibin Chen
- School of Materials Science and Engineering, Peking University, Beijing 100084, China
| | - Xinfeng Tan
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Jianguo Jiao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Dan Guo
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Jianbin Luo
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Han T, Zhao M, Sun C, Zhao R, Xu W, Zhang S, Singh S, Luo J, Zhang C. Macroscale Superlubricity of Hydrated Anions in the Boundary Lubrication Regime. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42094-42103. [PMID: 37625155 DOI: 10.1021/acsami.3c09277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Cations can achieve excellent hydration lubrication at smooth interfaces under both microscale and macroscale conditions due to the boundary layer composed of hydration shells surrounding charges, but what about anions? Commonly used friction pairs are negatively charged at the solid/solution interface. Achieving anionic adsorption through constructing positively charged surfaces is a prerequisite for studying the hydration lubrication of anions. Here we report the hydration layer composed of anions adsorbed on the positively charged polymer/sapphire interface at acidic electrolyte solutions with pH below the isoelectric point, which contributes to the hydration lubrication of anions. Strongly hydrated anions (for the case of SO42-) exhibit stable superlubricity comparable to cations, with strikingly low boundary friction coefficient of 0.003-0.007 under contact pressures above 15 MPa without a running-in period. The hydration lubrication performance of anions is determined by both the ionic hydration strength and ion adsorption density based on the surface potential and tribological experiments. The results shed light on the role of anions in superlubricity and hydration lubrication, which may be relevant for understanding the lubrication mechanism and improving lubrication performance in acidic environments, for example, in acid pumps, sealing rings of compressors for handling acidic media, and processing devices of nuclear waste.
Collapse
Affiliation(s)
- Tianyi Han
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Mingbo Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Chuan Sun
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Ruiqi Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Wanxing Xu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Shumin Zhang
- Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms, Beijing Institute of Control Engineering, Beijing 100094, China
| | - Sudesh Singh
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, Sharda School of Engineering and Technology, Sharda University, Greater Noida 201310, India
| | - Jianbin Luo
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Chenhui Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Li Y, Gao K, Zhang Y, Jiao J, Zhang L, Xie G. Partially Oxidized Violet Phosphorus as an Excellent Lubricant Additive for Tribological Applications. NANO LETTERS 2023. [PMID: 37410894 DOI: 10.1021/acs.nanolett.3c00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
As a novel two-dimensional material, violet phosphorus (VP) has attracted a considerable amount of attention due to its high carrier mobility, anisotropy, wide band gap, stability, and easy stripping properties. In this work, the microtribological properties of partially oxidized VP (oVP) and the mechanism of reducing friction and wear as additives in oleic acid (OA) oil were studied systematically. When adding oVP to OA, the coefficient of friction (COF) decreased from 0.084 to 0.014 with the steel-to-steel pair, and the ultralow shearing strength tribofilm consisting of amorphous carbon and phosphorus oxides that formed resulted in the reductions of COF and wear rate individually by 83.3% and 53.9%, respectively, compared with those of pure OA. The results extended the application scenarios for VP in the design of lubricant additives.
Collapse
Affiliation(s)
- Yunze Li
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Kai Gao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jianguo Jiao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lin Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Guoxin Xie
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
9
|
Wang C, He Q, Guo P, Qi H, Su J, Chen W, Tang C, Jia Y. Friction properties of black phosphorus: a first-principles study. NANOTECHNOLOGY 2023; 34:275703. [PMID: 37015217 DOI: 10.1088/1361-6528/acca25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Based on the first-principle, the friction anisotropy, structural super-lubricity and oxidation induced ultra-low friction of black phosphorus at atomic scale under different loads have been studied. The results show that the interface friction of black phosphorus is anisotropic, that is, the friction along the armchair direction is greater than that along the zigzag direction. Moreover, the friction between the black phosphorus interfaces shows a structural superlubricity property, and the incommensurate interface friction is approximately one thousandth of the commensurate interface friction, which is mainly due to the less electronic charge and the smaller amplitude of electronic charge change between the incommensurate interfaces during the friction process. In addition, the oxidation of black phosphorus is beneficial for lubrication between interfaces.
Collapse
Affiliation(s)
- Changqing Wang
- Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang, 471023, People's Republic of China
- College of Science, Zhongyuan University of Technology, Zhengzhou, 450007, People's Republic of China
| | - Qing He
- College of Science, Zhongyuan University of Technology, Zhengzhou, 450007, People's Republic of China
| | - Peng Guo
- College of Science, Zhongyuan University of Technology, Zhengzhou, 450007, People's Republic of China
| | - Haoqiang Qi
- College of Science, Zhongyuan University of Technology, Zhengzhou, 450007, People's Republic of China
| | - Jianfeng Su
- Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Weiguang Chen
- School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, 450044, People's Republic of China
| | - Chunjuan Tang
- Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Physics and Electronics, Henan University, Kaifeng 475001, People's Republic of China
| |
Collapse
|
10
|
Sun S, Yi S, Li J, Ding Z, Song W, Luo J. Lithium Citrate Triggered Macroscopic Superlubricity with Near-Zero Wear on an Amorphous Carbon Film. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19705-19714. [PMID: 37018161 DOI: 10.1021/acsami.3c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
An amorphous carbon (a-C) film shows substantial potential for friction and wear reduction. In this work, the robust superlubricity state with a coefficient of friction of 0.002 at the maximal pressure of 1.15 GPa was realized when lithium citrate (LC) was applied as the lubricating additive in ethylene glycol (EG) to lubricate the Si3N4/a-C friction pair based on the ball-on-plate friction test. The wear rate of the a-C film was 4.5 × 10-10 mm3/N·m, which was reduced by 98.3% compared to that of the film lubricated with EG. Friction promoted the chemisorption of the LC molecules via the tribochemical reaction between the carboxylate radicals and the a-C film. The exposed lithium ions could adsorb water molecules to form a hydration layer, providing extremely low shear strength. Furthermore, the colloidal silica layer formed on the Si3N4 ball via the tribochemical reaction could reduce friction. It was difficult to destroy the formed tribochemical films under high contact pressure because they were robust, preventing the direct contact of the friction pair and resulting in the near-zero wear of the a-C film.
Collapse
Affiliation(s)
- Shouyi Sun
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China
- Department of Engineering Mechanics, Northwestern Polytechnical University (Chang'an Campus), Xi'an 710129, China
| | - Shuang Yi
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jinjin Li
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China
| | - Zhengmao Ding
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China
| | - Wei Song
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China
| | - Jianbin Luo
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Du C, Yu T, Zhang L, Deng H, Shen R, Li X, Feng Y, Wang D. Macroscale Superlubricity with Ultralow Wear and Ultrashort Running-In Period (∼1 s) through Phytic Acid-Based Complex Green Liquid Lubricants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10302-10314. [PMID: 36755437 DOI: 10.1021/acsami.2c22402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid superlubricity has attracted much attention, due to its ability to significantly reduce friction on the macroscale. However, the severe wear caused by the long running-in period is still one of the bottlenecks restricting the practical application of liquid superlubricating materials. In this work, the obtained polyethylene glycol-phytic acid (PEG-PA) composite liquid lubricants showed outstanding superlubricating properties (μ ≈ 0.006) for Si3N4/glass friction pairs with an ultrashort running-in period (∼1 s) under high Hertzian contact pressure of ∼758 MPa. More importantly, even after up to 12 h (∼700 m of travel), only about 100 nm deep wear scars were found on the surface of the glass sheet (wear rate = 2.51× 10-9 mm3 N-1 m-1). From the molecular point of view, the water molecules anchored between the two friction pairs have extremely low shear force during the friction process, and the strong hydrogen bond interaction between PEG and PA greatly improves the bearing capacity of the lubricant. This work addresses the challenge of liquid superlubricant simultaneously exhibiting low shear force and high load-carrying capacity and makes it possible to obtain liquid superlubrication performance with an extremely short running-in time.
Collapse
Affiliation(s)
- Changhe Du
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtong Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266104, China
| | - Liqiang Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266104, China
| | - Haoyu Deng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruilin Shen
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaojuan Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yange Feng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266104, China
| | - Daoai Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266104, China
| |
Collapse
|
12
|
Macroscale Superlubricity of Black Phosphorus Quantum Dots. LUBRICANTS 2022. [DOI: 10.3390/lubricants10070158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present work, Black Phosphorus Quantum Dots (BPQDs) were synthesized via sonication-assisted liquid-phase exfoliation. The average size of the BPQDs was 3.3 ± 0.85 nm. The BPQDs exhibited excellent dispersion stability in ultrapure water. Macroscale superlubricity was realized with the unmodified BPQDs on rough Si3N4/SiO2 interfaces. A minimum coefficient of friction (COF) of 0.0022 was achieved at the concentration of 0.015 wt%. In addition, the glycerol was introduced to promote the stability of the superlubricity state. The COF of the BPQDs-Glycerol aqueous solution (BGaq) was 83.75% lower than that of the Glycerol aqueous solution (Gaq). Based on the above analysis, the lubrication model was presented. The hydrogen-bonded network and silica gel layer were formed on the friction interface, which played a major role in the realization of macroscale superlubricity. In addition, the adsorption water layer could also prevent the worn surfaces from making contact with each other. Moreover, the synergistic effect between BPQDs and glycerol could significantly decrease the COF and maintain the superlubricity state. The findings theoretically support the realization of macroscale superlubricity with unmodified BPQDs as a water-based lubrication additive.
Collapse
|
13
|
Multilayer Coatings for Tribology: A Mini Review. NANOMATERIALS 2022; 12:nano12091388. [PMID: 35564097 PMCID: PMC9102559 DOI: 10.3390/nano12091388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/06/2023]
Abstract
Friction and wear usually lead to huge energy loss and failure of machine pairs, which usually causes great economic losses. Researchers have made great efforts to reduce energy dissipation and enhance durability through advanced lubrication technologies. Single-layer coatings have been applied in many sectors of engineering, but the performance of single-layer coatings still has many limitations. One solution to overcome these limitations is to use a multilayer coating that combines different components with varied physical and chemical properties. In addition, multilayer coating with alternating layers only containing two components can lead to improved performance compared to a coating with only two different layers. This paper systematically reviews the design concept and properties of different types of multilayer coatings, including transition-metal nitride coatings, diamond-like carbon-based coatings, and other multilayer coatings. The inherent functional mechanisms of the multilayer structures are also detailed and discussed.
Collapse
|