1
|
Kamalakannan S, Balasubramaniyan N, Neppolian B. Impact of Phosphorus Doping on Triazine- and Triazole-Based Mesoporous C 3N 5, C 3N 6, and C 3N 7 with Excellent Photocatalytic Hydrogen Production. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11394-11406. [PMID: 40314319 DOI: 10.1021/acs.langmuir.5c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
In recent years, little attention has been paid to triazine- and triazole-based mesoporous C3N5, C3N6, and C3N7, which are potential catalysts. High-N/C atomic ratio carbon nitrides (>2) may possess unique electronic properties. To synthesize these nanostructures, however, many portions of the carbon nitride frameworks in the C-N have to be replaced with N-N frameworks that are thermodynamically less stable. C3N5, C3N6, and C3N7 are thermodynamically stable mesoporous materials synthesized from 5-amino-1H-tetrazole (5-AT) at 400, 300, and 250 °C. The properties of photocatalytic H2 production from phosphorus-doped mesoporous C3N5, C3N6, and C3N7 were investigated for the first time with triazine and triazole units. Based on our study, we found that phosphorus (P) replaced carbon to form P-N/P═N bonds through four coordinations, which form the P 2p-level donor positions in the band gap, thereby enhancing light absorption and reducing charge separation. Photocatalytic H2 production in P-doped mesoporous C3N5, C3N6, and C3N7 samples was higher than that observed in undoped mesoporous C3N5, C3N6, and C3N7 samples under light irradiation. According to the results, the 10MPC3N5 reaction rate is 637.7 μmol g-1 h-1, which is 6 times higher than the MC3N5 reaction rate. The excess phosphorus doping, however, interrupted the triazole and triazine units, reducing the efficiency of the photocatalytic H2 reaction. P-doped mesoporous C3N5, C3N6, and C3N7 effectively arranged in this study can be characterized as effective, simplistic, and promising catalysts for environmental remediation and energy applications.
Collapse
Affiliation(s)
- Saravanan Kamalakannan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Natarajan Balasubramaniyan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Bernaurdshaw Neppolian
- Energy and Environmental Remediation Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
2
|
Saravanakumar K, Jagan G, Njaramba LK, Yoon Y, Park CM. Efficient photo-assisted activation of peroxydisulfate by a novel Z-scheme sulfur-doped C 3N 5/DyFeO 3 heterojunction for norfloxacin degradation: Activation mechanism and DFT studies on reaction pathways. ENVIRONMENTAL RESEARCH 2025; 268:120735. [PMID: 39743012 DOI: 10.1016/j.envres.2024.120735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Peroxydisulfate (PDS) activation is a crucial process for wastewater treatment in complicated water matrices. However, it is frequently limited because of poor selectivity, sluggish kinetics, and short lifetime of radicals. Therefore, in this study, an efficient sulfur-doped C3N5/DyFeO3 (SCN/DyF) Z-scheme heterostructure catalyst was rationally developed using a simple wet-chemical strategy to photoactivate PDS, which can effectively degrade norfloxacin (NOR; 96.1%) in a water environment. The coupling of SCN/DyF catalyst with PDS shows favorable synergistic effect, with NOR degradation rate in the following order: SCN/DyF-1 (k = 0.0177/min) < SCN/DyF-2 (k = 0.0253/min) < SCN/DyF-3 (k = 0.0343/min) < SCN/DyF-4 (k = 0.0441/min) after 60 min of irradiation. The optimal SCN/DyF-4 achieved a higher NOR degradation under the reaction conditions of 0.6 g/L catalyst dosage, 10 mg/L NOR concentration, natural pH (6.7), and 2.0 mM PDS. The SCN/DyF heterojunction exhibited impressive PDS photoactivation performance because of its Z-scheme charge-transfer platform, accelerated redox cycle, and enhanced light absorption. Furthermore, the structural changes and chemical interactions between the main elements of the catalysts were systematically investigated. Two reaction routes for NOR degradation were identified by combining radical-trapping tests and electron spin resonance spectroscopy. Moreover, the ecotoxicity of the degraded NOR intermediates were confirmed through density functional theory calculations. This work provides an ideal platform for activating PDS systems using Z-scheme photocatalysts for real water remediation.
Collapse
Affiliation(s)
- Karunamoorthy Saravanakumar
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Govindan Jagan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Lewis Kamande Njaramba
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
Hussain S, Sohail M, Shahzad N, Will G, O'Mulane AP, Abdala A, Alnaser IA, Karim MR, Wahab MA. Single Precursor-Derived Sub-1 nm MoCo Bimetallic Particles Decorated on Phosphide-Carbon Nitride Framework for Sustainable Hydrogen Generation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4728-4743. [PMID: 39779368 DOI: 10.1021/acsami.4c12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The strategic design and fabrication of efficient electrocatalysts are pivotal for advancing the field of electrochemical water splitting (EWS). To enhance EWS performance, integrating non-noble transition metal catalysts through a cooperative double metal incorporation strategy is important and offers a compelling alternative to conventional precious metal-based materials. This study introduces a novel, straightforward, single-step process for fabricating a bimetallic MoCo catalyst integrated within a three-dimensional (3D) nanoporous network of N, P-doped carbon nitride derived from a self-contained precursor. The subsequent carbonization at 550 °C yields a highly effective bimetallic phosphide carbon nitride electrocatalyst, denoted as MoCoPCN, tailored explicitly for EWS. The MoCoPCN electrocatalyst demonstrates exceptional electrocatalytic performance, with a low onset potential of 1.43 V and an overpotential value of 202 mV at a current density of 10 mA/cm2 for the oxygen evolution reaction (OER) and 49.5 mV for the hydrogen evolution reaction (HER), respectively. Moreover, the catalyst exhibits a high electrochemically active surface area of 2720 cm-2, a small Tafel slope of 47.5 mV dec-1 for HER and 45.7 mV dec-1 for the OER, and a low charge transfer resistance of 0.09 Ω for the HER and 0.805 Ω for the OER. The optimal catalyst was tested for overall water splitting performance in a 1 M KOH electrolyte, demonstrating excellent efficiency with a low cell voltage of 1.49 V required to achieve a current density of 10 mA/cm2. These outstanding characteristics, combined with the synergistic effects arising from the interaction between MoCo and P-g-C3N4 (PCN), underscore the potential of a bimetallic phosphide carbon nitride material as a highly promising electrocatalyst for efficient water splitting.
Collapse
Affiliation(s)
- Sadam Hussain
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Nadia Shahzad
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Geoffrey Will
- Energy and Process Engineering Division, School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane City, Queensland 4001, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Anthony P O'Mulane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University, Education City, Doha, Qatar
- College of Science Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Ibrahim A Alnaser
- Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Mohammad Rezaul Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Md Abdul Wahab
- Energy and Process Engineering Division, School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane City, Queensland 4001, Australia
- Chemical Engineering Program, Texas A&M University, Education City, Doha, Qatar
| |
Collapse
|
4
|
Bao SD, Bao A. Regulating the Performance of CO 2 Adsorbents Based on the Pyrolysis Mechanism of Self-Sacrificial Templating Agents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24718-24730. [PMID: 39504539 DOI: 10.1021/acs.langmuir.4c03844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Previous research has proven that the pore shape and nitrogen group content of adsorbents play essential roles in determining their carbon dioxide (CO2) adsorption performance. In this article, a series of nitrogen-doped porous carbon materials were prepared for CO2 adsorption by varying the proportion of carbon nitride, the pyrolysis temperature, and the activation ratio of KOH, using chitosan as the carbon source, carbon nitride (g-C3N4 and g-C3N5) as self-sacrificing templating agents, and KOH as the activator. Among the prepared materials, T6-850-1 has the highest specific surface area (SBET) of 2336 m2/g, and T6-750-1 has the highest microporous area (Smicro) and CO2 adsorption capacity (1 bar, 298 K) of 1969 m2/g and 3.49 mmol/g, respectively. The thermal decomposition temperature and products of carbon nitride templates were characterized and tested by thermogravimetric infrared gas chromatography-mass spectrometry (TG-IR-GC-MS), and the thermal decomposition mechanisms of the two carbon nitride templates were investigated. We found that the thermal stability of the template directly affects the pore structure of the final sample as well as the type and quantity of nitrogen species.
Collapse
Affiliation(s)
- Su Dan Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Agula Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| |
Collapse
|
5
|
Yan H, Li W, Yang H, Yu Y, Lv C, Hou L, Zhang W, Lin D, Jiao S. Construction of Ni 3S 4@ZIS@C 3N 5 photocatalyst with type II and Z-type heterojunctions by self-assembly for efficient photocatalytic hydrogen evolution. ENVIRONMENTAL RESEARCH 2024; 248:118302. [PMID: 38278508 DOI: 10.1016/j.envres.2024.118302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
A novel ternary photocatalyst Ni3S4@ZIS@C3N5 with type II and Z-type heterojunctions was synthesized for the first time by hydrothermal and electrostatic self-assembly methods, effectively avoiding the thermal decomposition of C3N5 during the synthesis of the complex. The best ternary catalyst Ni3S4@ZIS@C3N5 is capable of achieving an optimal hydrogen evolution rate of 9750 mmol g-1 h-1, which is approximately 10.89 times as high as that of C3N5, indicating that the complex effectively enhanced the photocatalytic properties of the monomer. The coexistence of two types of heterojunctions in the complex effectively enhances photocatalytic performance, in which the monomer ZIS constructs type II scheme with Ni3S4 and Z-type scheme with C3N5, respectively. The two heterojunctions complement each other and jointly promote the rapid electron transfer from Ni3S4 and C3N5 to the ZIS surface. In conclusion, the cooperation of the two heterojunctions efficiently facilitates the migration of photogenerated carriers, thus enhancing the photocatalytic hydrogen generation performance of Ni3S4@ZIS@C3N5.
Collapse
Affiliation(s)
- Huixiang Yan
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, PR China
| | - Wei Li
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, PR China.
| | - Huixing Yang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, PR China
| | - Yongzhuo Yu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, PR China
| | - Chaoyu Lv
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, PR China
| | - Linlin Hou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, PR China
| | - Wenxu Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, PR China
| | - Di Lin
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, PR China
| | - Shichao Jiao
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics, School of Electronic and Information Engineering, South China Normal University, Guangzhou, 510006, PR China
| |
Collapse
|
6
|
Ng SF, Foo JJ, Ong WJ. Isotype heterojunction: tuning the heptazine/triazine phase of crystalline nitrogen-rich C 3N 5 towards multifunctional photocatalytic applications. MATERIALS HORIZONS 2024; 11:408-418. [PMID: 37791413 DOI: 10.1039/d3mh01115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Photocatalytic technology has been well studied as a means to achieve sustainable energy generation through water splitting or chemical synthesis. Recently, a low C/N atomic ratio carbon nitride allotrope, C3N5, has been found to be highly prospective due to its excellent electronic properties and ample N-active sites compared to g-C3N4. Tangentially, crystalline g-C3N4 has also been a prospective candidate due to its improved electron transport and extended π-conjugated system. For the first time, our group successfully employed a one-step molten salt calcination method to prepare novel N-rich crystalline C3N5 and elucidate the effect of calcination temperature on the heptazine/triazine phase. Calcination temperatures of 500 °C (CC3N5-500) and 550 °C (CC3N5-550) lead to crystalline carbon nitride with both heptazine and triazine phases, forming an intimate isotype heterojunction for robust interfacial charge separation. An excellent photocatalytic hydrogen evolution rate (359.97 μmol h-1; apparent quantum efficiency (AQE): 12.86% at 420 nm) was achieved using CC3N5-500, which was 15-fold higher than that of pristine C3N5. Furthermore, CC3N5-500 exhibited improved activity for simultaneous benzyl alcohol oxidation and hydrogen production, as well as H2O2 production (AQE: 9.49% at 420 nm), signifying its multitudinous photoredox capabilities. Moreover, the recyclability tests of the optimal CC3N5-500 on a 3D-printed substrate also showed a 92% performance retention after 4 cycles (16 h). This highlights that crystalline C3N5 significantly augmented the reaction performance for diverse multifunctional solar-driven applications. As such, these results serve as a guide toward the structural tuning of 2D metal-free carbon nanomaterials with tunable crystallinity toward achieving boosted photocatalysis.
Collapse
Affiliation(s)
- Sue-Faye Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
| | - Joel Jie Foo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363200, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
7
|
John G, Priyadarshini S, Babu A, Mohan H, Oh BT, Navaneethan M, Jesuraj PJ. Unleashing the room temperature boronization: Blooming of Ni-ZIF nanobuds for efficient photo/electro catalysis of water. CHEMOSPHERE 2024; 346:140574. [PMID: 37926164 DOI: 10.1016/j.chemosphere.2023.140574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/18/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Water splitting provides an environmental-friendly and sustainable approach for generating hydrogen fuel. The inherent energetic barrier in two-core half reactions such as the Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) leads to undesired increased overpotential and constrained reaction kinetics. These challenges pose significant challenges that demand innovative solutions to overcome. One of the efficient ways to address this issue is tailoring the morphology and crystal structure of metal-organic frameworks (MOF). Nickel Zeolite Imidazolate Framework (Ni-ZIF) is a popular MOF and it can be tailored using facile chemical methods to unleash a remarkable bifunctional electro/photo catalyst. This innovative solution holds the capability to address prevailing obstacles such as inadequate electrical conductivity and limited access to active metal centers due to the influence of organic ligands. Thereby, applying boronization to the Ni-ZIF under different duration, one can induce blooming of nanobuds under room temperature and modify oxygen vacancies in order to achieve higher reaction kinetics in electro/photo catalysis. It can be evidenced by the 24-h boronized Ni-ZIF (BNZ), exhibiting lower overpotentials as electrocatalyst (OER-396 mV & HER-174 mV @ 20 mA/cm2) in 1 M KOH electrolyte and augmented gas evolution rates when employed as a photocatalyst (Hydrogen-14.37 μmol g-1min-1 & Oxygen-7.40 μmol g-1min-1). The 24-h boronization is identified as the optimum stage of crystalline to amorphous transformation which provided crystalline/amorphous boundaries as portrayed by X-Ray diffraction (XRD) and High Resolution-Transmission Electron Microscopy (HR-TEM) analysis. The flower-like transformation of 24-BNZ, characterized by crystalline-amorphous boundaries initiates with partial disruption of Ni-N bonds and formation of Ni-B bonds as evident from X-ray Photoelectron Spectroscopy (XPS). Further, the 24-h BNZ exhibit bifunctional catalytic activities with pre-longed stability. Overall, this work presents a comprehensive study of the electrocatalytic and photocatalytic water splitting properties of the tailored Ni-ZIF material.
Collapse
Affiliation(s)
- G John
- Functional Material and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Potheri, Chengalpattu, 603 203, India
| | - S Priyadarshini
- Functional Material and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Potheri, Chengalpattu, 603 203, India
| | - Anandha Babu
- Nanotechnology Research Centre (NRC), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Potheri, Chengalpattu, 603 203, India; Department of Physics, Bannari Amman Institute of Technology, Sathyamangalam, Tamil nadu, India; Department of Physiology, Saveetha Dental college and hospitals, Saveetha Institute of Medical and Technical sciences, Saveetha University, chennai - 600077, Tamil nadu, India
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54590, Republic of Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54590, Republic of Korea
| | - M Navaneethan
- Functional Material and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Potheri, Chengalpattu, 603 203, India; Nanotechnology Research Centre (NRC), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Potheri, Chengalpattu, 603 203, India
| | - P Justin Jesuraj
- Functional Material and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Potheri, Chengalpattu, 603 203, India.
| |
Collapse
|
8
|
He S, Liu Y, Wang G, Luo L, Tang X, Xiang D, Jiang T, Jing J, Wang L. Heterojunction photocatalyst FeS 2/g-C 3N 5 for activating sulfites to degrade tetracycline: A stable degradation system based on heterogeneous processes. ENVIRONMENTAL RESEARCH 2023; 237:116939. [PMID: 37611781 DOI: 10.1016/j.envres.2023.116939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
The UV/sulfite system is a promising source of •SO4- and/or •OH, but its application is largely limited by the use of UV light due to its high cost and high energy consumption. Graphite carbon nitride (g-C3N5), as a new photocatalytic material, has better visible light absorption capacity and narrower band gap than g-C3N4, which is expected to activate sulfite under visible light to solve this problem. Herein, a novel FeS2/CN heterojunction material based on g-C3N5 was constructed by hydrothermal in-situ synthesis method and successfully activated sulfite, which was confirmed by tetracycline degradation experiments in water. Under optimized conditions, the degradation rate of TC in 1 h reached 96%. The experimental results revealed that the FeS2/CN heterostructure enhances the absorption of visible light and inhibits the recombination of carriers, enabling more electrons and holes to be utilized. Holes play a major role in the degradation reaction, promote the sulfite chain reaction, and effectively regulate the cycle of Fe2+ and Fe3+ in the solution. Iron ion leaching is negligible and the degradation reaction remains stable at pH 5-9.
Collapse
Affiliation(s)
- Siyu He
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Yaoqi Liu
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Guanlong Wang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Lingzhi Luo
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Xiaoyun Tang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Dongmei Xiang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Tingting Jiang
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Jiang Jing
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China.
| | - Lei Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Kamalakannan S, Balasubramaniyan N, Bernaurdshaw N, Vattikondala G. Impact of nitrogen doping on triazole-based graphitic carbon Nitride-TiO 2 (P25) S-scheme heterojunction for improved photocatalytic hydrogen production. NANOSCALE ADVANCES 2023; 5:5907-5922. [PMID: 37881703 PMCID: PMC10597561 DOI: 10.1039/d3na00597f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Establishing an S-scheme heterojunction is a promising method for increasing the photocatalytic activity of synthetic materials. In this study, nitrogen-doped g-C3N5/TiO2 S-scheme photocatalysts have been synthesized and examined for photocatalytic hydrogen production using thermal decomposition methods. Nitrogen-doped g-C3N5/TiO2 composites performed better than pure nitrogen-doped g-C3N5 and TiO2 alone. Using experiments and density functional theory (DFT) calculations, nitrogen (N) doping was identified as being introduced by replacing the carbon (C) atoms in the matrix of g-C3N5. In addition to its narrow band gap, N-doped g-C3N5 showed efficient carrier separation and charge transfer, resulting in the enhanced absorption of visible light and photocatalytic activity. DFT, XPS, optical property characteristics, and PL spectra confirmed these findings, which were attributed to the successful nitrogen doping, and the composite was proven to be a potential candidate for photocatalytic hydrogen generation under light irradiation. The quantity of H2 produced from the nitrogen-doped g-C3N5/TiO2 composite for 3 hours (3515.1 μmol g-1) was about three times that of N-doped g-C3N5. The H2 production percentage of the nitrogen-doped g-C3N5/TiO2 catalyst with Pt as the cocatalyst was improved by nearly ten times as compared to N-doped g-C3N5/TiO2 without a cocatalyst. Herein, we report the successful preparation of the N-doped g-C3N5/TiO2 S-scheme heterojunction and highlight a simple and efficient catalyst for energy storage requirements and environmental monitoring.
Collapse
Affiliation(s)
- Saravanan Kamalakannan
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur - 603 203 Tamil Nadu India
| | - Natarajan Balasubramaniyan
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur - 603 203 Tamil Nadu India
| | - Neppolian Bernaurdshaw
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603 203 Tamil Nadu India
| | - Ganesh Vattikondala
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology Kattankulathur 603203 Tamil Nadu India
| |
Collapse
|
10
|
Mengesha DN, Shiferraw BT, Kim H. Modification of the electronic structure of g-C 3N 4 using urea to enhance the visible light-assisted degradation of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102910-102926. [PMID: 37676452 DOI: 10.1007/s11356-023-29692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Graphitic carbon nitride has been proven to be a good candidate for using solar energy for photo-induced pollutant degradation. However, the high photo-induced holes-electron recombination rate, unfavorable morphology, and textural properties limited their application. In this study, we present a novel g-C3N4 with a novel electronic structure and physiochemical properties by introducing a single nitrogen in the graphitic network of the g-C3N4 through a novel method involving step-by-step co-polycondensation of melamine and urea. Through extensive characterization using techniques such as XPS, UPS-XPS, Raman, XRD, FE-SEM, TEM, and N2 adsorption-desorption, we analyze the electronic and crystallographic properties, as well as the morphology and textural features of the newly prepared g-C3N4 (N-g-C3N4). This material exhibits a lower C/N ratio of 0.62 compared to conventional g-C3N4 and a reduced band gap of 2.63 eV. The newly prepared g-C3N4 demonstrates a distinct valance band maxima that enhances its photo-induced oxidation potential, improving photocatalytic activity in degrading various organic pollutants. We thoroughly investigate the photocatalytic degradation performance of N-g-C3N4 for Congo red (CR) and sulfamethoxazole (SMX), and removal of up to 90 and 86% was attained after 2 h at solution pH of 5.5 for CR and SMX. The influence of different parameters was examined to understand the degradation mechanism and the influence of reactive oxygenated species. The catalytic performance is also evaluated in the degradation of various organic pollutants, and it showed a good performance.
Collapse
Affiliation(s)
- Daniel N Mengesha
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Bezawit T Shiferraw
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| |
Collapse
|
11
|
Tang R, Zeng H, Feng C, Xiong S, Li L, Zhou Z, Gong D, Tang L, Deng Y. Twisty C-TiO 2 /PCN S-Scheme Heterojunction with Enhanced n→π * Electronic Excitation for Promoted Piezo-Photocatalytic Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207636. [PMID: 36772900 DOI: 10.1002/smll.202207636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/10/2023] [Indexed: 05/04/2023]
Abstract
Herein, a twisty C-TiO2 /PCN (CNT) Step-scheme (S-scheme) heterojunction is fabricated and applied to degrade ciprofloxacin (CIP) with the assistance of ultrasonic vibration and visible light irradiation. The nitrogen-rich twisty polymeric carbon nitride (PCN) can not only induce a non-centrosymmetric structure with enhanced polarity for a better piezoelectric effect but also provide abundant lone pair electrons to promote n→π* transition during photocatalysis. Its hybridization with C-TiO2 particles can construct S-scheme heterojunction in CNT. During the piezo-photocatalysis, the strain-induced polarization electric field in the heterojunction can regulate the electron migration between the two components, resulting in a more effective CIP degradation. With the synergistic effect of ultrasonic vibration and visible light irradiation, the reaction rate constant of CIP degradation by CNT increases to 0.0517 min-1 , which is 1.86 times that of photocatalysis and 6.46 times that of ultrasound. This system exhibits a stable CIP decomposition efficiency under the interference of various environmental factors. In addition, the in-depth investigation found that three pathways and 12 major intermediates with reduced toxicity are produced after the reaction. Hopefully, the construction of this twisty CNT S-scheme heterojunction with enhanced piezo-photocatalytic effect offers inspiration for the design of environmentally functional materials.
Collapse
Affiliation(s)
- Rongdi Tang
- College of Resources & Environment, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Hao Zeng
- College of Resources & Environment, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Chengyang Feng
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Sheng Xiong
- College of Resources & Environment, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Ling Li
- College of Resources & Environment, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Zhanpeng Zhou
- College of Resources & Environment, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Daoxin Gong
- College of Resources & Environment, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yaocheng Deng
- College of Resources & Environment, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
| |
Collapse
|
12
|
Chen N, Zeng Y, Li T, Cui P, Dionysiou DD, Wang X, Liu C, Fang G, Ding C, Zhao Y, Gao J, Wang Y, Zhou D. Phosphorus doping significantly enhanced the catalytic performance of cobalt-single-atom catalyst for peroxymonosulfate activation and contaminants degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131480. [PMID: 37146341 DOI: 10.1016/j.jhazmat.2023.131480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Increasing studies have been conducted to explore strategies for enhancing the catalytic performance of metal-doped C-N-based materials (e.g., cobalt (Co)-doped C3N5) via heteroatomic doping. However, such materials have been rarely doped by phosphorus (P) with the higher electronegativity and coordination capacity. In current study, a novel P and Co co-doped C3N5 (Co-xP-C3N5) was developed for peroxymonosulfate (PMS) activation and 2,4,4'-trichlorobiphenyl (PCB28) degradation. The PCB28 degradation rate increased by 8.16-19.16 times with Co-xP-C3N5 compared to conventional activators under similar reaction conditions (e.g., PMS concentration). The state-of-the-art techniques, including X-ray absorption spectroscopy and electron paramagnetic resonance etc., were applied to explore the mechanism of P doping for enhancing Co-xP-C3N5 activation. Results showed that P doping induced the formation of Co-P and Co-N-P species, which increased the contents of coordinated Co and improved Co-xP-C3N5 catalytic performance. The Co mainly coordinated with the first shell layer of Co1-N4, with successful P doping occurring in the second shell layer of Co1-N4. The P doping favored electron transfer from the C to N atom near Co sites and thus strengthened PMS activation owing to its higher electronegativity. These findings provide new strategy for enhancing the performance of single atom-based catalysts for oxidant activation and environmental remediation.
Collapse
Affiliation(s)
- Ning Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yu Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tai Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH 45221-0071, USA
| | - Xiaolei Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Yuan Zhao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
13
|
Liu J, Wang S, Zhao C, Zheng J. Engineered g-C 3N 5-Based Nanomaterials for Photocatalytic Energy Conversion and Environmental Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:499. [PMID: 36770460 PMCID: PMC9921555 DOI: 10.3390/nano13030499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Photocatalysis plays a vital role in sustainable energy conversion and environmental remediation because of its economic, eco-friendly, and effective characteristics. Nitrogen-rich graphitic carbon nitride (g-C3N5) has received worldwide interest owing to its facile accessibility, metal-free nature, and appealing electronic band structure. This review summarizes the latest progress for g-C3N5-based photocatalysts in energy and environmental applications. It begins with the synthesis of pristine g-C3N5 materials with various topologies, followed by several engineering strategies for g-C3N5, such as elemental doping, defect engineering, and heterojunction creation. In addition, the applications in energy conversion (H2 evolution, CO2 reduction, and N2 fixation) and environmental remediation (NO purification and aqueous pollutant degradation) are discussed. Finally, a summary and some inspiring perspectives on the challenges and possibilities of g-C3N5-based materials are presented. It is believed that this review will promote the development of emerging g-C3N5-based photocatalysts for more efficiency in energy conversion and environmental remediation.
Collapse
Affiliation(s)
- Juanjuan Liu
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao 266580, China
- Shandong Engineering and Technology Research Center for Ecological Fragile Belt of Yellow River Delta, Binzhou University, Binzhou 256600, China
| | - Shuaijun Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chaocheng Zhao
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao 266580, China
| | - Jingtang Zheng
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
14
|
Multiscale modification of carbon nitride-based homojunction for enhanced photocatalytic atrazine decomposition. J Colloid Interface Sci 2023; 630:127-139. [DOI: 10.1016/j.jcis.2022.09.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022]
|
15
|
Diethylenetriamine-CdS hybrid materials (CdS-DETA) loaded nitrogen-rich carbon nitride (g-C3N5) for enhanced hydrogen production and photocatalytic degradation: Enhancement based on band bending. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Zhang J, Li Z, He J, Tao H, Chen M, Zhou Y, Zhu M. Reinforced Photogenerated Electrons in Few-Layer C 3N 5 for Enhanced Catalytic NO Oxidation and CO 2 Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Junlei Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou511443, P.R. China
| | - Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou511443, P.R. China
| | - Jie He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou511443, P.R. China
| | - Hengcong Tao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, Zhejiang316022, P.R. China
| | - Mengshan Chen
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang316004, P.R. China
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang316004, P.R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou511443, P.R. China
| |
Collapse
|
17
|
Zhang W, Zhou M, Kan Y, Chen J, Hu Y, Xing W. Synthesis and flame retardant efficiency study of two phosphorus-nitrogen type flame retardants containing triazole units. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Visible light driven photocatalytic performance of 3D TiO2/g-C3N5 nanocomposite via Z-scheme charge transfer promotion for water purification. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Yang J, Long J, Huang H, Yang X, Wei L. Synthesis of visible-light driven CeO2/g-C3N5 heterojunction with enhanced photocatalytic performance for organic dyes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Zeng X, Hou M, Zhu P, Yuan M, Ouyang S, Lu Q, Zhao C, Wang H, Du F, Zeng G, Zhang Y. g-C 3N 5-dots as fluorescence probes prepared by an alkali-assisted hydrothermal method for cell imaging. RSC Adv 2022; 12:26476-26484. [PMID: 36275159 PMCID: PMC9478806 DOI: 10.1039/d2ra03934f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Carbon nitride materials have become one of the highly explored carbon-based nanomaterials due to their unique properties. Herein, the novel graphitic carbon nitride quantum dots (g-C3N5-dots) were synthesized using an alkali-assisted hydrothermal method. The proposed strategy was simple, time-saving and the entire synthetic process only takes 60 min. And the prepared g-C3N5-dots showed excellent dispersion and good stability in water. What is more, the g-C3N5-dots displayed bright blue fluorescence with a high quantum yield of 12%. It was found that the g-C3N5-dots exhibited peroxidase-like activity, good biocompatibility and low cytotoxicity and can be successfully applied in cell imaging. The proposed method opens a new and efficient way for the preparation of fluorescent g-C3N5-dots and facilitates g-C3N5-dots for bioimaging and related biological sensing applications.
Collapse
Affiliation(s)
- Xiangwang Zeng
- College of Biological and Chemical Engineering, Changsha University Changsha 410022 China +86-731-84261382 +86-84261506
| | - Mengke Hou
- College of Biological and Chemical Engineering, Changsha University Changsha 410022 China +86-731-84261382 +86-84261506
| | - Pan Zhu
- College of Biological and Chemical Engineering, Changsha University Changsha 410022 China +86-731-84261382 +86-84261506
| | - Minyi Yuan
- College of Biological and Chemical Engineering, Changsha University Changsha 410022 China +86-731-84261382 +86-84261506
| | - Sitao Ouyang
- College of Biological and Chemical Engineering, Changsha University Changsha 410022 China +86-731-84261382 +86-84261506
| | - Qiujun Lu
- College of Biological and Chemical Engineering, Changsha University Changsha 410022 China +86-731-84261382 +86-84261506
| | - Chenxi Zhao
- College of Biological and Chemical Engineering, Changsha University Changsha 410022 China +86-731-84261382 +86-84261506
| | - Haiyan Wang
- College of Biological and Chemical Engineering, Changsha University Changsha 410022 China +86-731-84261382 +86-84261506
| | - Fuyou Du
- College of Biological and Chemical Engineering, Changsha University Changsha 410022 China +86-731-84261382 +86-84261506
| | - Guangsheng Zeng
- College of Biological and Chemical Engineering, Changsha University Changsha 410022 China +86-731-84261382 +86-84261506
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 China
| |
Collapse
|
21
|
Li G, Zeng G, Chen Z, Hong J, Ji X, Lan Z, Tan X, Li M, Hu X, Tang C. In Situ Coupling Carbon Defective C 3N 5 Nanosheet with Ag 2CO 3 for Effective Degradation of Methylene Blue and Tetracycline Hydrochloride. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2701. [PMID: 35957132 PMCID: PMC9370685 DOI: 10.3390/nano12152701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The development of novel catalysts for degrading organic contaminants in water is a current hot topic in photocatalysis research for environmental protection. In this study, C3N5 nanosheet/Ag2CO3 nanocomposites (CNAC-X) were used as efficient photocatalysts for the visible-light-driven degradation of methylene blue (MB), and tetracycline hydrochloride (TC-HCl) was synthesized for the first time using a simple thermal oxidative exfoliation and in situ deposition method. Due to the synergistic effect of nanosheet structures, carbon defects, and Z-scheme heterojunctions, CNAC-10 exhibited the highest photocatalytic activity, with photodegradation efficiencies of 96.5% and 97.6% for MB (60 mg/L) and TC-HCl (50 mg/L) within 90 and 100 min, respectively. The radical trapping experiments showed that ·O2- and h+ played major roles in the photocatalytic effect of the CNAC-10 system. Furthermore, intermediates in the photodegradation of MB and TC-HCl were investigated to determine possible mineralization pathways. The results indicated that C3N5 nanosheet/Ag2CO3 photocatalysts prepared in this work could provide an effective reference for the treatment of organic wastewater.
Collapse
Affiliation(s)
- Guoyu Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Genying Zeng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhangkai Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiaming Hong
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaodong Ji
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiqiang Lan
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Meifang Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chunfang Tang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
22
|
Meng J, Tong Z, Sun H, Liu Y, Zeng S, Xu J, Xia Q, Pan Q, Dou S, Yu H. Metal-Free Boron/Phosphorus Co-Doped Nanoporous Carbon for Highly Efficient Benzyl Alcohol Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200518. [PMID: 35411718 PMCID: PMC9189657 DOI: 10.1002/advs.202200518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Indexed: 05/16/2023]
Abstract
An in-depth understanding of the electronic structures of catalytically active centers and their surrounding vicinity is key to clarifying the structure-activity relationship, and thus enabling the design and development of novel metal-free carbon-based materials with desired catalytic performance. In this study, boron atoms are introduced into phosphorus-doped nanoporous carbon via an efficient strategy, so that the resulting material delivers better catalytic performance. The doped B atoms alter the electronic structures of active sites and cause the adjacent C atoms to act as additional active sites that catalyze the reaction. The B/P co-doped nanoporous carbon shows remarkable catalytic performance for benzyl alcohol oxidation, achieving high yield (over 91% within 2 h) and selectivity (95%), as well as low activation energy (32.2 kJ mol-1 ). Moreover, both the conversion and selectivity remain above 90% after five reaction cycles. Density functional theory calculations indicate that the introduction of B to P-doped nanoporous carbon significantly increases the electron density at the Fermi level and that the oxidation of benzyl alcohol occurs via a different reaction pathway with a very low energy barrier. These findings provide important insights into the relationship between catalytic performance and electronic structure for the design of dual-doped metal-free carbon catalysts.
Collapse
Affiliation(s)
- Juan Meng
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040China
| | - Zhihan Tong
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040China
| | - Haixin Sun
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040China
| | - Yongzhuang Liu
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040China
| | - Suqing Zeng
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040China
| | - Jianing Xu
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040China
| | - Qinqin Xia
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040China
| | - Qingjiang Pan
- Key Laboratory of Functional Inorganic Material ChemistrySchool of Chemistry and Materials ScienceHeilongjiang UniversityHarbin150080China
| | - Shuo Dou
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040China
| | - Haipeng Yu
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040China
| |
Collapse
|
23
|
Cui T, Zhang Y, Yan Y, Zhao J, Qi K, Jiang J. Synthesis and properties of Sm‐TiO
2
coupled with g‐C
3
N
4
for improved photocatalytic degradation toward methylene blue and tetracycline under visible‐light irradiation. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tianyi Cui
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps College of Chemistry and Chemical Engineering, Tarim University, Alar Xinjiang China
| | - Yuan Zhang
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps College of Chemistry and Chemical Engineering, Tarim University, Alar Xinjiang China
| | - Yumin Yan
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps College of Chemistry and Chemical Engineering, Tarim University, Alar Xinjiang China
| | - Jianbo Zhao
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps College of Chemistry and Chemical Engineering, Tarim University, Alar Xinjiang China
| | - Kezhen Qi
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering Shenyang Normal University Shenyang China
| | - Jianhui Jiang
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps College of Chemistry and Chemical Engineering, Tarim University, Alar Xinjiang China
| |
Collapse
|
24
|
Cai Z, Huang Y, Ji H, Liu W, Fu J, Sun X. Type-II surface heterojunction of bismuth-rich Bi4O5Br2 on nitrogen-rich g-C3N5 nanosheets for efficient photocatalytic degradation of antibiotics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119772] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Zhu D, Huang Z, Wang H, Lu Q, Ruan G, Zhao C, Du F. Sustainable and reusable electrospun g-C3N5/MIL-101(Fe)/poly(acrylonitrile-co-maleic acid) nanofibers for photocatalytic degradation of emerging pharmaceutical pollutants. NEW J CHEM 2022. [DOI: 10.1039/d2nj02029g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To fabricate sustainable and reusable photocatalyst materials is urgent and desirable for removal of emerging pharmaceutical pollutants (EPPs) in environment water samples. In this work, we described the fabrication of...
Collapse
|
26
|
He M, An W, Wang Y, Men Y, Liu S. Hybrid Metal-Boron Diatomic Site Embedded in C 2 N Monolayer Promotes C-C Coupling in CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104445. [PMID: 34558186 DOI: 10.1002/smll.202104445] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Double-atom catalyst (DAC) has gained much interest for its versatile tuning and synergistic effect of dual-atom active sites. Metal (M)-metal (M) diatomic sites, either homo- or heteronuclear, are typically researched. Hybrid metal-non-metal combined sites have rarely been studied and even the viability of such active sites are unknown. Herein, CO2 electroreduction (CO2 RR) is explored on M@X-C2 N (M = Fe, Co, Ni, and Cu; X = S, P, and B) which renders naturally generated M-X diatomic site. Using spin-polarized density functional theory coupled with computational hydrogen electrode model, it is demonstrated that the functionality of hybrid M-B dual-atom center is superior over that of a single- or double-M center in driving CO2 RR especially C-C coupling. Among metal-boron DACs studies, Fe@B-C2 N (μ = 2μB ) exhibits the lowest free energy barrier of 0.17 eV in C-C coupling whereas Ni@B-C2 N (μ = 0μB ) mainly produces CH4 with the lowest barrier of 0.42 eV. Hence, the electronic spin state of M can be particularly important in modulating selectivity and C-C coupling barrier in CO2 RR. Fe@B-C2 N is predicted as the promising catalyst for CO2 RR towards C2+ products owing partially to its enhanced spin state. The findings can enrich the design strategy of electrocatalysts normally running at ambient conditions.
Collapse
Affiliation(s)
- Miaomiao He
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering, 333 Longteng Road, Songjiang District, Shanghai, 201620, China
| | - Wei An
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering, 333 Longteng Road, Songjiang District, Shanghai, 201620, China
| | - Yuanqiang Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering, 333 Longteng Road, Songjiang District, Shanghai, 201620, China
| | - Yong Men
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering, 333 Longteng Road, Songjiang District, Shanghai, 201620, China
| | - Shuang Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering, 333 Longteng Road, Songjiang District, Shanghai, 201620, China
| |
Collapse
|