1
|
Kan X, Wang JC, Dong YB. Metalated covalent organic frameworks as efficient catalysts for multicomponent tandem reactions. Chem Commun (Camb) 2024; 60:6362-6374. [PMID: 38836312 DOI: 10.1039/d4cc01743a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Multicomponent tandem reactions have become indispensable synthetic methods due to their economic advantages and efficient usage in natural products and drug synthesis. The emergence of metalated covalent organic frameworks (MCOFs) has opened up new opportunities for the advancement of multicomponent tandem reactions. In contrast to commonly used homogeneous transition metal catalysts, MCOFs possess regular porosity, high crystallinity, and rich metal chelation sites that facilitate the uniform distribution and anchoring of metals within their cavities. Thus, they show extremely high activity and have recently been widely employed as catalysts for multicomponent tandem reactions. It is timely to conduct a review of MCOFs in multicomponent tandem reactions, in order to offer guidance and assistance for the synthesis of MCOF catalysts and their application in multicomponent tandem reactions. This review provides a comprehensive overview of the design and synthesis of MCOFs, their application and progress in multicomponent tandem reactions, and the primary challenges encountered during their current development with the aim of contributing to the promotion of the field.
Collapse
Affiliation(s)
- Xuan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jian-Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
2
|
Streater DH, Kennehan ER, Wang D, Fiankor C, Chen L, Yang C, Li B, Liu D, Ibrahim F, Hermans I, Kohlstedt KL, Luo L, Zhang J, Huang J. Control over Charge Separation by Imine Structural Isomerization in Covalent Organic Frameworks with Implications on CO 2 Photoreduction. J Am Chem Soc 2024; 146:4489-4499. [PMID: 38327095 DOI: 10.1021/jacs.3c10627] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Two-dimensional covalent organic frameworks (COFs) are an emerging class of photocatalytic materials for solar energy conversion. In this work, we report a pair of structurally isomeric COFs with reversed imine bond directions, which leads to drastic differences in their physical properties, photophysical behaviors, and photocatalytic CO2 reduction performance after incorporating a Re(bpy)(CO)3Cl molecular catalyst through bipyridyl units on the COF backbone (Re-COF). Using the combination of ultrafast spectroscopy and theory, we attributed these differences to the polarized nature of the imine bond that imparts a preferential direction to intramolecular charge transfer (ICT) upon photoexcitation, where the bipyridyl unit acts as an electron acceptor in the forward imine case (f-COF) and as an electron donor in the reverse imine case (r-COF). These interactions ultimately lead the Re-f-COF isomer to function as an efficient CO2 reduction photocatalyst, while the Re-r-COF isomer shows minimal photocatalytic activity. These findings not only reveal the essential role linker chemistry plays in COF photophysical and photocatalytic properties but also offer a unique opportunity to design photosensitizers that can selectively direct charges.
Collapse
Affiliation(s)
- Daniel H Streater
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Eric R Kennehan
- Magnitude Instruments, 200 Innovation Boulevard Ste. 224, State College, Pennsylvania 16803, United States
| | - Denan Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Christian Fiankor
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Liangji Chen
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chongqing Yang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Daohua Liu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Faysal Ibrahim
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ive Hermans
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kevin L Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jian Zhang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
3
|
Shi S, Liu W, Li Y, Lu S, Zhu H, Du M, Chen X, Duan F. Rational design of bimetallic sites in covalent organic frameworks for efficient photocatalytic oxidative coupling of amines. J Colloid Interface Sci 2024; 655:611-621. [PMID: 37956548 DOI: 10.1016/j.jcis.2023.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
The conversion of organic compounds by photocatalysis under mild conditions is an environment-friendly alternative for organic transformations. In this work, the bimetallic covalent organic framework coordinated by Sr2+ and Fe2+ in the porphyrin centers with molar ratio of 2:1 (COF-Sr2Fe1) was synthesized through a two-step reaction. Under the synergistic regulation of Sr2+ and Fe2+, the separation of photogenerated charges and visible light absorption for COF-Sr2Fe1 were significantly promoted, and thus COF-Sr2Fe1 exhibited efficient photocatalytic performance towards benzylamine oxidative coupling reaction with a yield of 97 %, much higher than that of the nonmetallic covalent organic framework COF-366. Moreover, it was found that the Fe site displayed higher dehydrogenation ability and the Sr site displayed higher CN coupling ability through the density functional theory (DFT) calculations, thereby making the dehydrogenation and CN coupling steps more controllable for benzylamine oxidative coupling reaction by COF-Sr2Fe1. This work provides a strategy for designing efficient covalent organic frameworks photocatalysts, and helps to understand the oxidative coupling of amines more deeply.
Collapse
Affiliation(s)
- Songhu Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wenhao Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yujie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xin Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
4
|
Wu J, Xu L, Kong Z, Gu K, Lu Y, Wu X, Zou Y, Wang S. Integrated Tandem Electrochemical-chemical-electrochemical Coupling of Biomass and Nitrate to Sustainable Alanine. Angew Chem Int Ed Engl 2023; 62:e202311196. [PMID: 37721394 DOI: 10.1002/anie.202311196] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/19/2023]
Abstract
Alanine is widely employed for synthesizing polymers, pharmaceuticals, and agrochemicals. Electrocatalytic coupling of biomass molecules and waste nitrate is attractive for the nitrate removal and alanine production under ambient conditions. However, the reaction efficiency is relatively low due to the activation of the stable substrates, and the coupling of two reactive intermediates remains challenging. Herein, we realize the integrated tandem electrochemical-chemical-electochemical synthesis of alanine from the biomass-derived pyruvic acid (PA) and waste nitrate (NO3 - ) catalyzed by PdCu nano-bead-wires (PdCu NBWs). The overall reaction pathway is demonstrated as a multiple-step catalytic cascade process via coupling the reactive intermediates NH2 OH and PA on the catalyst surface. Interestingly, in this integrated tandem electrochemical-chemical-electrochemical catalytic cascade process, Cu facilitates the electrochemical reduction of nitrate to NH2 OH intermediates, which chemically couple with PA to form the pyruvic oxime, and Pd promotes the electrochemical reduction of pyruvic oxime to the desirable alanine. This work provides a green strategy to convert waste NO3 - to wealth and enriches the substrate scope of renewable biomass feedstocks to produce high-value amino acids.
Collapse
Affiliation(s)
- Jingcheng Wu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, the, National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, China
| | - Leitao Xu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, the, National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, China
| | - Zhijie Kong
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, the, National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, China
- Shenzhen Institute of Hunan University, Shenzhen, 518057, China
| | - Kaizhi Gu
- Shenzhen Institute of Hunan University, Shenzhen, 518057, China
| | - Yuxuan Lu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, the, National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, the, National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, the, National Supercomputer Centers in Changsha, Hunan University, Changsha, 410082, China
| |
Collapse
|
5
|
Wang N, Liu J, Li X, Wang C, Ma L. One-pot synthesis of nickel encapsulated COF-derived catalyst for highly selective and efficient hydrogenation of cinnamaldehyde. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
6
|
Bucciol F, Gaudino EC, Villa A, Valsania MC, Cravotto G, Manzoli M. Microwave‐Assisted Reductive Amination of Aldehydes and Ketones Over Rhodium‐Based Heterogeneous Catalysts. Chempluschem 2023; 88:e202300017. [DOI: 10.1002/cplu.202300017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/08/2023] [Indexed: 03/29/2023]
|
7
|
Selective control in the reductive amination of benzaldehyde towards corresponding amines over COF supported Pt, Pd, and Rh catalysts. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
8
|
Recent advances in covalent organic frameworks-based heterogeneous catalysts for high-efficiency chemical transformation of carbon dioxide. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Zhang X, Zhao J, Che C, Qin J, Wan T, Sun F, Ma J, Long Y. Uniformly microporous diatomite supported Ni0/2+ catalyzed controllable selective reductive amination of benzaldehydes to primary amines, secondary imines and secondary amines. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
11
|
Zhang Y, Ma S. Laser-induced Synthesis of Ultrafine Gold Nanoparticles in Covalent Organic Frameworks. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Haotian R, Zhu Z, Cai Y, Wang W, Wang Z, Liang A, Luo A. Application of Covalent Organic Framework-Based Electrochemical Biosensors in Biological Sample Detection. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22070339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Platinum Nanoclusters Uniformly Dispersed on Covalent Organic Framework Supports for Selective Synthesis of Secondary Amines. ChemCatChem 2021. [DOI: 10.1002/cctc.202101587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|