1
|
Yang S, Liu L, Chen Q, He R, Wu C, Ma J, Xu J, Zhang H. Facile preparation of lac terpene acid based heat setting adhesive with improved performances. Int J Biol Macromol 2025; 307:141947. [PMID: 40074129 DOI: 10.1016/j.ijbiomac.2025.141947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
As a by-product of shellac resin, the high-value utilization of lac terpene acid (LTA) is a major challenge. In this study, a novel adhesive material, designated as A-LTA, was developed through a facile synthesis reaction between LTA and melamine, demonstrating significantly enhanced performance characteristics. The A-LTA adhesive, owing to its diverse functional groups, demonstrates exceptional cross-linking and polymerization capabilities under elevated temperatures, resulting in the formation of multiple chemical bonds and a highly dense network structure. This unique molecular architecture endows the material with remarkable adhesion properties, exhibiting high adhesive strength and bending strength across various substrates, including steel, aluminum, glass, bamboo, and poplar, within a broad temperature range. Its adhesive performance was superior to commercially available section adhesives, and its adhesive strength increased from 1.95 to 11.47 MPa compared to LTA. Furthermore, A-LTA maintained a robust and effective adhesion under harsh environments, demonstrating exceptional resistance to acid, alkali, water, organic solvents and low-temperature. These superior characteristics position A-LTA as a promising multifunctional adhesive with substantial potential for industrial applications and sustainable development.
Collapse
Affiliation(s)
- Shuaifei Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China; Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest forestry University, Kunming, Yunnan 650224, China
| | - Lanxiang Liu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China.
| | - Qi Chen
- Hebei Technological Innovation Center for Volatile Organic Compounds Detection and Treatment in Chemical Industry, Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China.
| | - Rui He
- Institute of Highland Forest Science, Chinese Academy of Forestry, Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China
| | - Chunhua Wu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest forestry University, Kunming, Yunnan 650224, China
| | - Jinju Ma
- Institute of Highland Forest Science, Chinese Academy of Forestry, Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China
| | - Juan Xu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China
| | - Hong Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Research Center of Engineering and Technology of Characteristic Forest Resources, Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650233, China.
| |
Collapse
|
2
|
Caliari M, Vidal F, Mantione D, Seychal G, Campoy-Quiles M, Irusta L, Fernandez M, de Pariza XL, Habets T, Aramburu N, Raquez JM, Grignard B, Müller AJ, Detrembleur C, Sardon H. Fully Recyclable Pluripotent Networks for 3D Printing Enabled by Dissociative Dynamic Bonds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417355. [PMID: 40025887 DOI: 10.1002/adma.202417355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/23/2025] [Indexed: 03/04/2025]
Abstract
Additive manufacturing (AM) has risen in popularity due to its ability to produce complex shapes in a material-efficient way. However, to produce objects with advanced properties, complex multimaterial strategies are often employed. This one-polymer-one-property paradigm significantly slows down the application of AM, and in particular of fused deposition modeling (FDM), for manufacturing of functional objects. In this study advantage of pluripotency in materials is taken, i.e., the ability to attain different properties from a single stock, to afford mechanically tunable 3D printed dynamic thermosets (moduli from 2 MPa - 3 GPa, 1500× increase, Stress at break from 2 to 70 MPa, 35× increase). To do so, FDM-compatible CO2-derived dissociative polymer networks are designed that undergo a dynamic reaction-induced phase-separation (DRIPS). This strategy enables the control of the size of the rigid phase with a simple post-printing thermal treatment, cascading in spatially patterned mechanical properties. This study showcases new directions for the 3D printing communities, with deep implications in soft robotics and compliant mechanics.
Collapse
Affiliation(s)
- Marco Caliari
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián, 20018, Spain
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, Liege, 4000, Belgium
| | - Fernando Vidal
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián, 20018, Spain
| | - Daniele Mantione
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Guillem Seychal
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián, 20018, Spain
- Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Mariano Campoy-Quiles
- Institute of Materials Science of Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| | - Lourdes Irusta
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián, 20018, Spain
| | - Mercedes Fernandez
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián, 20018, Spain
| | - Xabier Lopez de Pariza
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián, 20018, Spain
| | - Thomas Habets
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, Liege, 4000, Belgium
| | - Nora Aramburu
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián, 20018, Spain
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, Mons, 7000, Belgium
- WEL Research Institute, Avenue Pasteur 6, Wavre, 1300, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, Liege, 4000, Belgium
- FRITCO2T Platform, University of Liege, Sart-Tilman B6a, Liege, 4000, Belgium
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, Liege, 4000, Belgium
- WEL Research Institute, Avenue Pasteur 6, Wavre, 1300, Belgium
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, Donostia-San Sebastián, 20018, Spain
| |
Collapse
|
3
|
Crolais AE, Chen C, Gao J, Dolinski ND, Xu Y, de Pablo JJ, Snyder SA, Rowan SJ. A Twist on Controlling the Equilibrium of Dynamic Thia-Michael Reactions. J Org Chem 2025; 90:4037-4045. [PMID: 40053380 DOI: 10.1021/acs.joc.4c03150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The thia-Michael reaction, i.e., the addition of a thiol to an α,β-unsaturated carbonyl moiety, has recently gained significant attention within the field of dynamic covalent chemistry. Interestingly, including an additional electron-withdrawing group at the α-position of the Michael acceptor can result in room temperature (rt), catalyst-free dynamic thia-Michael reactions. Importantly, the electronic nature of the Michael acceptor can be used to tune the equilibrium constant (Keq) of these reactions. Herein we report how sterics can be used to enhance the Keq of these rt dynamic bonds. A series of benzalcyanoacetate, benzalcyanoacetamide, and benzalisoxazolone-based Michael acceptors with varying substituents in the ortho-position of their β-phenyl rings were investigated. By placing substituents in such a position, out-of-plane twisting was created between the β-phenyl ring and the α,β-unsaturated carbonyl, raising the overall energy of the reactants and leading to significant increases in Keq. By modulating the size of the ortho-substituent, the magnitude of Keq could be increased by 1.3 to 6.8 times relative to their para-substituted counterparts. The ortho-substituted acceptors could still be tuned electronically through the para-position, allowing access to r.t., dynamic covalent bonds whose Keq could be tuned from 10 to 1.8 × 106 M-1 across the three acceptor families.
Collapse
Affiliation(s)
- Alex E Crolais
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Chuqiao Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Junhao Gao
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Neil D Dolinski
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Yinan Xu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemical Engineering, Tandon School of Engineering, Department of Physics, and Courant Institute, New York University, Brooklyn, New York 11201, United States
| | - Scott A Snyder
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Wang L, Ma J, Li J, Fang L, Liu C. Transdermal patch based on pressure-sensitive adhesive: the importance of adhesion for efficient drug delivery. Expert Opin Drug Deliv 2025; 22:405-420. [PMID: 39881563 DOI: 10.1080/17425247.2025.2460650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/12/2024] [Accepted: 01/27/2025] [Indexed: 01/31/2025]
Abstract
INTRODUCTION Transdermal patches offer a unique advantage by providing extended therapeutic benefits while maintaining stable plasma drug concentration. The efficacy and safety of patches depend significantly on their ability to adhere to the skin, a feature influenced by various external and internal factors. AREAS COVERED The review primarily focuses on the fundamental aspects of adhesion in transdermal patches, including basic information about the skin, the underlying principles of adhesion, drug delivery, and adhesion characteristics of pressure sensitive adhesives (PSAs), adhesion issues, impact factors, strategies to improve patch adhesion, and relevant molecular mechanisms. EXPERT OPINION The development of transdermal patches with sufficient adhesion for consistent and extended drug delivery remains a challenging task. Challenges in adhesion stem from the complex interplay among PSAs, permeation enhancers, active pharmaceutical ingredients (APIs), and other excipients in current patch compositions, further complicated by variations arising from dermatological factors. These intricacies significantly impede the consistent effectiveness of patches. Progress in the exploration of new PSA polymers, in conjunction with innovative patch compositions, is crucial for establishing an optimal equilibrium between drug utilization rate, drug-loading, drug release, and adhesion, thus effectively addressing the challenges related to adhesion.
Collapse
Affiliation(s)
- Liuyang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Junyao Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Jiaxin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Liang Fang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Chao Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Xie Y, Li G, Wu J, Zhu J, Cai X, Zhao P, Zhang D, Zhong Y. Injectable self-healing alginate/PEG hydrogels cross-linked via thiol-Michael addition bonds for hemostasis and wound healing. Carbohydr Polym 2025; 348:122864. [PMID: 39562129 DOI: 10.1016/j.carbpol.2024.122864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024]
Abstract
In this study, an alginate/PEG hydrogel was developed via a thiol-Michael addition reaction between oxidized quinone of catechols on dopamine-grafted sodium alginate (SA-DA) and sulfhydryl groups of 4-arm polyethylene glycol tetra-thiol (4-arm PEG-SH) under mildly basic conditions. Through the formation of thiol-terminated catechol groups, the accompanying oxidized catechols are reduced, significantly strengthening the internal network structure of the hydrogel and improving tissue adhesion. Meanwhile, the hydrogels have excellent self-healing properties due to the dynamic non-covalent bonds between the groups. Adjustment of hydrogel properties by varying the mass ratio of two hydrogel precursors. Due to the high content of thiol-terminated catechol groups, the Gel 3 exhibited good tissue adhesion, rapid self-healing ability, and other multifunctions beneficial to wound healing, including killing of E. coli and S. aureus, rapid hemostasis and promoting migration of L929 cells. The full-thickness skin wound model shows that the hydrogel dressing significantly accelerated wound contraction, with increased granulation tissue thickness, collagen disposition, and enhanced vascularization, thus promoting wound healing. Therefore, the thiol-Michael addition reaction is an effective method for creating multifunctional hydrogels, and the injectable self-healing alginate/PEG hydrogels prepared in this way could be used in the biomedical area as wound healing dressing materials.
Collapse
Affiliation(s)
- Yuxuan Xie
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Guichen Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jun Wu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiachen Zhu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuemei Cai
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Peizuo Zhao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Dan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yuan Zhong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
6
|
Song H, Nan L, Wang J, Cai Y, Sun P, Liu J, Liu C, Fang L. A polyethylene glycol-grafted pullulan polysaccharide adhesive improves drug loading capacity and release efficiency. Int J Biol Macromol 2024; 265:130958. [PMID: 38503369 DOI: 10.1016/j.ijbiomac.2024.130958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
In this study, polyethylene glycol was grafted onto pullulan polysaccharides, resulting in the development of a novel adhesive termed PLUPE, offering superior drug loading capacity and rapid release efficiency. The efficacy of PLUPE was rigorously evaluated through various tests, including the tack test, shear strength test, 180° peel strength test, and human skin adhesion test. The results demonstrated that PLUPE exhibited a static shear strength that was 4.6 to 9.3 times higher than conventional PSAs, ensuring secure adhesion for over 3 days on human skin. A comprehensive analysis, encompassing electrical potential evaluation, calculation of interaction parameters, and FT-IR spectra, elucidated why improved the miscibility between the drug and PSAs, that the significant enhancement of intermolecular hydrogen bonding in the PLUPE structure. ATR-FTIR, rheological, and thermodynamic analyses further revealed that the hydrogen bonding network in PLUPE primarily interacted with polar groups in the skin. This interaction augmented the fluidity and free volume of PSA molecules, thereby promoting efficient drug release. The results confirmed the safety profile of PLUPE through skin irritation tests and MTT assays, bolstering its viability for application in TDDS patches. In conclusion, PLUPE represented a groundbreaking adhesive solution for TDDS patches, successfully overcoming longstanding challenges associated with PSAs.
Collapse
Affiliation(s)
- Haoyuan Song
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Longyi Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, 6Ministry of Education, College of Pharmacy, Yanbian University, 977 7Gongyuan Road, Yanji 133002, China
| | - Jiaqi Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yu Cai
- Key Laboratory of Natural Medicines of the Changbai Mountain, 6Ministry of Education, College of Pharmacy, Yanbian University, 977 7Gongyuan Road, Yanji 133002, China
| | - Peng Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jie Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
7
|
Hu N, Shu L, Zheng X, Deng Z, Cang X. A review of modification methods, joints and self-healing methods of adhesive for aerospace. Sci Prog 2024; 107:368504241242271. [PMID: 38651334 PMCID: PMC11036934 DOI: 10.1177/00368504241242271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In recent years, the adhesive technology has been widely used in the production of high-strength joins and precise positioning of various materials, such as metals, glass and composite materials. The adhesive technology has become a promising assembly process in the aerospace field due to its versatility, low creep and high damage tolerance. However, the reliability and predictability of adhesive bonding still require further development due to the complex operating conditions involved. Therefore, this article reviews and discusses the latest advances in aerospace adhesive technology, such as methods for improving bonding performance, bonding techniques (including joints structure and failure modes) and self-healing adhesive layers. Additionally, the current research results are summarised, and possible development trends and research directions in the field of adhesive bonding are prospected.
Collapse
Affiliation(s)
- Ning Hu
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Linsen Shu
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Xiangke Zheng
- Chinese Academy of Sciences, Xi’an Institute of Optics and Fine Mechanics, Xi’an, People’s Republic of China
| | - Zhifeng Deng
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Xinyu Cang
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| |
Collapse
|
8
|
Engelen S, Dolinski ND, Chen C, Ghimire E, Lindberg CA, Crolais AE, Nitta N, Winne JM, Rowan SJ, Du Prez FE. Vinylogous Urea-Urethane Vitrimers: Accelerating and Inhibiting Network Dynamics through Hydrogen Bonding. Angew Chem Int Ed Engl 2024; 63:e202318412. [PMID: 38198567 DOI: 10.1002/anie.202318412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Vinylogous urethane (VUO ) based polymer networks are widely used as catalyst-free vitrimers that show rapid covalent bond exchange at elevated temperatures. In solution, vinylogous ureas (VUN ) undergo much faster bond exchange than VUO and are highly dynamic at room temperature. However, this difference in reactivity is not observed in their respective dynamic polymer networks, as VUO and VUN vitrimers prepared herein with very similar macromolecular architectures show comparable stress relaxation and creep behavior. However, by using mixtures of VUO and VUN linkages within the same network, the dynamic reactions can be accelerated by an order of magnitude. The results can be rationalized by the effect of intermolecular hydrogen bonding, which is absent in VUO vitrimers, but is very pronounced for vinylogous urea moieties. At low concentrations of VUN , these hydrogen bonds act as catalysts for covalent bond exchange, while at high concentration, they provide a pervasive vinylogous urea - urethane (VU) network of strong non-covalent interactions, giving rise to phase separation and inhibiting polymer chain dynamics. This offers a straightforward design principle for dynamic polymer materials, showing at the same time the possible additive and synergistic effects of supramolecular and dynamic covalent polymer networks.
Collapse
Affiliation(s)
- Stéphanie Engelen
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium
| | - Neil D Dolinski
- Prtizker School of Molecular Engineering at, University of Chicago, IL 60637, Chicago, USA
| | - Chuqiao Chen
- Prtizker School of Molecular Engineering at, University of Chicago, IL 60637, Chicago, USA
| | - Elina Ghimire
- Prtizker School of Molecular Engineering at, University of Chicago, IL 60637, Chicago, USA
| | - Charlie A Lindberg
- Prtizker School of Molecular Engineering at, University of Chicago, IL 60637, Chicago, USA
| | - Alex E Crolais
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Natsumi Nitta
- Prtizker School of Molecular Engineering at, University of Chicago, IL 60637, Chicago, USA
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium
| | - Stuart J Rowan
- Prtizker School of Molecular Engineering at, University of Chicago, IL 60637, Chicago, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Filip E Du Prez
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000, Ghent, Belgium
| |
Collapse
|
9
|
Zhang X, Ding H, Li Z, Bai Y, Zhang L. A "Mesh Scaffold" that regulates the mechanical properties and restricts the phase transition-induced volume change of the PNIPAM-based hydrogel for wearable sensors. MATERIALS HORIZONS 2024; 11:835-846. [PMID: 38037353 DOI: 10.1039/d3mh01638b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) is capable of improving the reversibility and responsiveness of flexible electronics. However, its phase transition-induced volume variation and poor adhesiveness remain limitations for expending its applications. Herein, a pressure-sensitive adhesive (PSA), which is a type of mesh scaffold, is constructed inside the network of PNIPAM, providing the hydrogel with a constant volume in response to different temperatures, in situ tunable mechanical properties, and superior adhesiveness. The reversible density of the mesh scaffold adjusts the aggregation state of the hydrogel chains, whereupon it is capable of changing its mechanical modulus from 6.7 kPa to 45.3 kPa. This mechanical mechanism contributes to hydrogel-based flexible devices for multiple applications, especially in pressure-related sensors. The mesh scaffold restricts the phase-transition-induced volume variation, which allows the hydrogel sensor to stably monitor the external pressure at various temperatures. The high adhesion enables the effective interfacial interaction with the skin, avoiding the loss of sensing signals during the detection of human body movements. When it is assembled into an electronic device, it can transmit information and recognize sign language via Morse code. Thus, herein, we report a hydrogel sensor that is promising for pressure detection in temperature-unstable environments, especially for managing the health of patients who require emergency medical care through sign language recognition.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China.
| | - Haoran Ding
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China.
| | - Zhaozhao Li
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China.
| | - Yongping Bai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, P. R. China
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
| |
Collapse
|
10
|
Boynton NR, Dennis JM, Dolinski ND, Lindberg CA, Kotula AP, Grocke GL, Vivod SL, Lenhart JL, Patel SN, Rowan SJ. Accessing pluripotent materials through tempering of dynamic covalent polymer networks. Science 2024; 383:545-551. [PMID: 38300995 DOI: 10.1126/science.adi5009] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Pluripotency, which is defined as a system not fixed as to its developmental potentialities, is typically associated with biology and stem cells. Inspired by this concept, we report synthetic polymers that act as a single "pluripotent" feedstock and can be differentiated into a range of materials that exhibit different mechanical properties, from hard and brittle to soft and extensible. To achieve this, we have exploited dynamic covalent networks that contain labile, dynamic thia-Michael bonds, whose extent of bonding can be thermally modulated and retained through tempering, akin to the process used in metallurgy. In addition, we show that the shape memory behavior of these materials can be tailored through tempering and that these materials can be patterned to spatially control mechanical properties.
Collapse
Affiliation(s)
- Nicholas R Boynton
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Joseph M Dennis
- Sciences of Extreme Materials Division, Polymers Branch, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Neil D Dolinski
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Charlie A Lindberg
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Anthony P Kotula
- Materials Science and Engineering Division, National Institutes of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Garrett L Grocke
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Joseph L Lenhart
- Sciences of Extreme Materials Division, Polymers Branch, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Shrayesh N Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Dolinski ND, Tao R, Boynton NR, Kotula AP, Lindberg CA, Petersen KJ, Forster AM, Rowan SJ. Connecting Molecular Exchange Dynamics to Stress Relaxation in Phase-Separated Dynamic Covalent Networks. ACS Macro Lett 2024:174-180. [PMID: 38251912 DOI: 10.1021/acsmacrolett.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A suite of phase separated dynamic covalent networks based on highly tunable dynamic benzalcyanoacetate (BCA) thia-Michael acceptors are investigated. In situ kinetic studies on small molecule model systems are used in conjunction with macroscopic characterization of phase stability and stress relaxation to understand how the molecular dynamics relate to relaxation modes. Electronic modification of the BCA unit strongly impacts the exchange dynamics (particularly the rate of dissociation) and the overall equilibrium constant (Keq) of the system, with electron-withdrawing groups leading to decreased dissociation rate and increased Keq. Critically, below a chemistry-defined temperature cutoff (related to the stability of the hard phase domains), the stress relaxation behavior of these phase separated materials is dominated by the molecular exchange dynamics, allowing for networks with a tailored thermomechanical response.
Collapse
Affiliation(s)
- Neil D Dolinski
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Ran Tao
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nicholas R Boynton
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Anthony P Kotula
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Charlie A Lindberg
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Kyle J Petersen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Aaron M Forster
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Chemical Science and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60434, United States
| |
Collapse
|
12
|
Liu Z, Song Z, Lv B, Qiu Z. Re-Assemblable, Recyclable, and Self-Healing Epoxy Resin Adhesive Based on Dynamic Boronic Esters. Polymers (Basel) 2023; 15:3488. [PMID: 37631545 PMCID: PMC10459680 DOI: 10.3390/polym15163488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Thermosetting adhesives are commonly utilized in various applications. However, covalent cross-linked networks prevent thermosetting adhesives from being re-assembled, which necessitates higher machining precision. Additionally, the primary raw materials used in adhesive preparation are derived from non-renewable petroleum resources, which further constrain adhesive development. In this study, a recyclable adhesive was developed by incorporating dynamic boronic esters into epoxy resin derived from soybean oil. The successful synthesis of epoxidized soybean oil and boronic esters was confirmed through the analysis of proton nuclear magnetic resonance spectra and differential scanning calorimetry results. Swelling tests and tensile curves demonstrated the presence of covalently cross-linked networks. Self-healing and reprocessing experiments indicated that the cross-linked network topology could be re-assembled under mild conditions.
Collapse
Affiliation(s)
- Zhiyong Liu
- Huzhou Guoneng New Material Co., Ltd., Huzhou 313000, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Department of Polymer Materials and Engineering, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhiguo Song
- Huzhou Guoneng New Material Co., Ltd., Huzhou 313000, China
| | - Benrong Lv
- Huzhou Guoneng New Material Co., Ltd., Huzhou 313000, China
| | - Zumin Qiu
- Huzhou Guoneng New Material Co., Ltd., Huzhou 313000, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
13
|
Lu H, Ye H, Zhang M, Liu Z, Zou H, You L. Photoswitchable dynamic conjugate addition-elimination reactions as a tool for light-mediated click and clip chemistry. Nat Commun 2023; 14:4015. [PMID: 37419874 DOI: 10.1038/s41467-023-39669-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/22/2023] [Indexed: 07/09/2023] Open
Abstract
Phototriggered click and clip reactions can endow chemical processes with high spatiotemporal resolution and sustainability, but are challenging with a limited scope. Herein we report photoswitchable reversible covalent conjugate addition-elimination reactions toward light-addressed modular covalent connection and disconnection. By coupling between photochromic dithienylethene switch and Michael acceptors, the reactivity of Michael reactions was tuned through closed-ring and open-ring forms of dithienylethene, allowing switching on and off dynamic exchange of a wide scope of thiol and amine nucleophiles. The breaking of antiaromaticity in transition states and enol intermediates of addition-elimination reactions provides the driving force for photoinduced change in kinetic barriers. To showcase the versatile application, light-mediated modification of solid surfaces, regulation of amphiphilic assemblies, and creation/degradation of covalent polymers on demand were achieved. The manipulation of dynamic click/clip reactions with light should set the stage for future endeavors, including responsive assemblies, biological delivery, and intelligent materials.
Collapse
Affiliation(s)
- Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Meilan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Zimu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350002, Fuzhou, Fujian, China.
| |
Collapse
|
14
|
Upadhyay C, Ojha U. Stress-Induced Shape-Shifting Materials Possessing Autonomous Self-Healing and Scratch-Resistant Ability. Chem Asian J 2023; 18:e202201082. [PMID: 36637865 DOI: 10.1002/asia.202201082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
Covalent adaptable networks (CANs) capable of both shape-shifting and self-healing ability offer a viable alternative to 4D printing technology to gain access to various complex shapes in a simplified manner. However, most of the reported CANs exhibit shape-shifting ability in the presence of temperature, light or chemical stimuli, which restricts their further utilization as realization of such a controlled environment is not feasible under complex scenarios. Herewith, we report a set of CANs based on a room-temperature exchangeable thia-Michael adduct, which undergoes rearrangement in network topology on application of external stress. These CANs with tensile strength (≤6 MPa) and modulus (≤71.4 MPa) adopt to any programmed shape under application of nominal stress. The CANs also exhibit stress-induced recyclability, self-welding and self-healing ability under ambient conditions. The transparency and ambient condition self-healing ability render these CANs to be utilized as scratch-resistant coatings on display items.
Collapse
Affiliation(s)
- Chandan Upadhyay
- Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology, Jais, Bahadurpur, UP, 229304, India
| | - Umaprasana Ojha
- Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology, Jais, Bahadurpur, UP, 229304, India
| |
Collapse
|
15
|
Zhou J, Xu Y, Guo W. Preparation and drug release performance of amphiphilic medical hot‐melt pressure sensitive adhesives based on polystyrene‐isoprene‐styrene. J Appl Polym Sci 2023. [DOI: 10.1002/app.53600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jing Zhou
- Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Yuhan Xu
- Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Weihong Guo
- Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
16
|
Berne D, Ladmiral V, Leclerc E, Caillol S. Thia-Michael Reaction: The Route to Promising Covalent Adaptable Networks. Polymers (Basel) 2022; 14:4457. [PMID: 36298037 PMCID: PMC9609322 DOI: 10.3390/polym14204457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
While the Michael addition has been employed for more than 130 years for the synthesis of a vast diversity of compounds, the reversibility of this reaction when heteronucleophiles are involved has been generally less considered. First applied to medicinal chemistry, the reversible character of the hetero-Michael reactions has recently been explored for the synthesis of Covalent Adaptable Networks (CANs), in particular the thia-Michael reaction and more recently the aza-Michael reaction. In these cross-linked networks, exchange reactions take place between two Michael adducts by successive dissociation and association steps. In order to understand and precisely control the exchange in these CANs, it is necessary to get an insight into the critical parameters influencing the Michael addition and the dissociation rates of Michael adducts by reconsidering previous studies on these matters. This review presents the progress in the understanding of the thia-Michael reaction over the years as well as the latest developments and plausible future directions to prepare CANs based on this reaction. The potential of aza-Michael reaction for CANs application is highlighted in a specific section with comparison with thia-Michael-based CANs.
Collapse
Affiliation(s)
| | | | - Eric Leclerc
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Sylvain Caillol
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| |
Collapse
|
17
|
Mozelewska K, Antosik AK. Influence of Silicone Additives on the Properties of Pressure-Sensitive Adhesives. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165713. [PMID: 36013849 PMCID: PMC9414800 DOI: 10.3390/ma15165713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 06/02/2023]
Abstract
Research was carried out on the influence of various silicone compounds on the properties of pressure-sensitive adhesives. Silicone-based pressure-sensitive adhesives have good self-adhesive properties and are used in many different industries. However, their thermal resistance is relatively low. In order to improve this property, modifications were made to these adhesives. Compositions were tested, such as viscosity or thermogravimetric analysis, as well as tests of finished products in the form of self-adhesive tapes, i.e., peel adhesion, tack, cohesion at room and elevated temperature, SAFT test (Shear Adhesive Failure Temperature), pot-live (viscosity) and shrinkage. During the tests, an increase in thermal resistance (225 °C), lower shrinkage (0.08%), and lower viscosity was achieved (16.5 Pas), which is a positive phenomenon in the technology of pressure-sensitive adhesives. Thanks to this research, the properties of silicone self-adhesive adhesives have been significantly improved.
Collapse
|
18
|
Jackson GL, Dennis JM, Dolinski ND, van der Naald M, Kim H, Eom C, Rowan SJ, Jaeger HM. Designing Stress-Adaptive Dense Suspensions Using Dynamic Covalent Chemistry. Macromolecules 2022; 55:6453-6461. [PMID: 35966116 PMCID: PMC9367004 DOI: 10.1021/acs.macromol.2c00603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/06/2022] [Indexed: 11/29/2022]
Abstract
![]()
The non-Newtonian behaviors of dense suspensions are
central to
their use in technological and industrial applications and arise from
a network of particle–particle contacts that dynamically adapt
to imposed shear. Reported herein are studies aimed at exploring how
dynamic covalent chemistry between particles and the polymeric solvent
can be used to tailor such stress-adaptive contact networks, leading
to their unusual rheological behaviors. Specifically, a room temperature
dynamic thia-Michael bond is employed to rationally tune the equilibrium
constant (Keq) of the polymeric solvent
to the particle interface. It is demonstrated that low Keq leads to shear thinning, while high Keq produces antithixotropy, a rare phenomenon where the
viscosity increases with shearing time. It is proposed that an increase
in Keq increases the polymer graft density
at the particle surface and that antithixotropy primarily arises from
partial debonding of the polymeric graft/solvent from the particle
surface and the formation of polymer bridges between particles. Thus,
the implementation of dynamic covalent chemistry provides a new molecular
handle with which to tailor the macroscopic rheology of suspensions
by introducing programmable time dependence. These studies open the
door to energy-absorbing materials that not only sense mechanical
inputs and adjust their dissipation as a function of time or shear
rate but also can switch between these two modalities on demand.
Collapse
Affiliation(s)
- Grayson L. Jackson
- James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Joseph M. Dennis
- Combat Capabilities and Development Command, Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Neil D. Dolinski
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Michael van der Naald
- James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Department of Physics, University of Chicago, 5720 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Hojin Kim
- James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Christopher Eom
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
- Chemical and Engineering Sciences Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Heinrich M. Jaeger
- James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
- Department of Physics, University of Chicago, 5720 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
19
|
Shin S, Sim E, Lee W, Paik HJ, Yu Y, Ahn D. Synthesis and reactivity of novel cinnamonitrile derivatives as reactive UV stabilizers for enhanced light protection and performance of coatings. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
FitzSimons TM, Anslyn EV, Rosales AM. Effect of pH on the Properties of Hydrogels Cross-Linked via Dynamic Thia-Michael Addition Bonds. ACS POLYMERS AU 2022; 2:129-136. [PMID: 35445216 PMCID: PMC9011390 DOI: 10.1021/acspolymersau.1c00049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
Abstract
![]()
Hydrogels cross-linked
with dynamic covalent bonds exhibit time-dependent
properties, making them an advantageous platform for applications
ranging from biomaterials to self-healing networks. However, the relationship
between the cross-link exchange kinetics, material properties, and
stability of these platforms is not fully understood, especially upon
addition of external stimuli. In this work, pH was used as a handle
to manipulate cross-link exchange kinetics and control the resulting
hydrogel mechanics and stability in a physiologically relevant window.
Poly(ethylene glycol)-based hydrogels were cross-linked with a reversible
thia-Michael addition reaction in aqueous buffer between pH 3 and
pH 7. The rate constants of bond exchange and equilibrium constants
were determined for each pH value, and these data were correlated
with the resulting mechanical profiles of the bulk hydrogels. With
increasing pH, both the forward and the reverse rate constants increased,
while the equilibrium constant decreased. These changes led to faster
stress relaxation and less stiff hydrogels at more basic pH values.
The elevated pH values also led to an increased mass loss and a faster
rate of release of an encapsulated model bovine serum albumin fluorescent
protein. The connection between the kinetics, mechanics, and molecular
release profiles provides important insight into the structure–property
relationships of dynamic covalent hydrogels, and this system offers
a promising platform for controlled release between physiologically
relevant pH values.
Collapse
Affiliation(s)
- Thomas M FitzSimons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Zhang S, Liang R, Xu K, Zheng S, Mukherjee S, Liu P, Wang C, Chen Y. Construction of multifunctional micro-patterned PALNMA/PDADMAC/PEGDA hydrogel and intelligently responsive antibacterial coating HA/BBR on Mg alloy surface for orthopedic application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 132:112636. [DOI: 10.1016/j.msec.2021.112636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
|