1
|
Lamontagne HR, Cranston RR, Comeau ZJ, Harris CS, Shuhendler AJ, Lessard BH. Axial Phenoxylation of Aluminum Phthalocyanines for Improved Cannabinoid Sensitivity in OTFT Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305515. [PMID: 38641886 PMCID: PMC11251552 DOI: 10.1002/advs.202305515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/16/2024] [Indexed: 04/21/2024]
Abstract
Cannabis producers, consumers, and regulators need fast, accurate, point-of-use sensors to detect Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) from both liquid and vapor source samples, and phthalocyanine-based organic thin-film transistors (OTFTs) provide a cost-effective solution. Chloro aluminum phthalocyanine (Cl-AlPc) has emerged as a promising material due to its unique coordinating interactions with cannabinoids, allowing for superior sensitivity. This work explores the molecular engineering of AlPc to tune and enhance these interactions, where a series of novel phenxoylated R-AlPcs are synthesized and integrated into OTFTs, which are then exposed to THC and CBD solution and vapor samples. While the R-AlPc substituted molecules have a comparable baseline device performance to Cl-AlPc, their new crystal structures and weakened intermolecular interactions increase sensitivity to THC. Grazing-incidence wide-angle X-ray scattering (GIWAXS) and atomic force microscopy (AFM) are used to investigate this film restructuring, where a significant shift in the crystal structure, grain size, and film roughness is detected for the R-AlPc molecules that do not occur with Cl-AlPc. This significant crystal reorganization and film restructuring are the driving force behind the improved sensitivity to cannabinoids relative to Cl-AlPc and demonstrate that analyte-semiconductor interactions can be enhanced through chemical modification to create more responsive OTFT sensors.
Collapse
Affiliation(s)
- Halynne R. Lamontagne
- Department of Chemical and Biological EngineeringUniversity of Ottawa161 Louis PasteurOttawaONK1N 6N5Canada
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa150 Louis PasteurOttawaONK1N 6N5Canada
| | - Rosemary R. Cranston
- Department of Chemical and Biological EngineeringUniversity of Ottawa161 Louis PasteurOttawaONK1N 6N5Canada
| | - Zachary J. Comeau
- Advanced Electronics and DevicesNational Research Council Canada1200 Montreal RdOttawaONK1A 0R6Canada
| | - Cory S. Harris
- Department of BiologyUniversity of Ottawa30 Marie CurieOttawaONK1N 6N5Canada
| | - Adam J. Shuhendler
- Department of Chemistry and Biomolecular SciencesUniversity of Ottawa150 Louis PasteurOttawaONK1N 6N5Canada
- Department of BiologyUniversity of Ottawa30 Marie CurieOttawaONK1N 6N5Canada
- University of Ottawa Heart Institute40 Ruskin StOttawaONK1Y 4W7Canada
| | - Benoît H. Lessard
- Department of Chemical and Biological EngineeringUniversity of Ottawa161 Louis PasteurOttawaONK1N 6N5Canada
- School of Electrical Engineering and Computer ScienceUniversity of Ottawa800 King Edward AveOttawaONK1N 6N5Canada
| |
Collapse
|
2
|
Sánchez Vergara ME, Sandoval Plata EI, Ballinas Indili R, Salcedo R, Álvarez Toledano C. Structural determination, characterization and computational studies of doped semiconductors base silicon phthalocyanine dihydroxide and dienynoic acids. Heliyon 2024; 10:e25518. [PMID: 38356521 PMCID: PMC10864961 DOI: 10.1016/j.heliyon.2024.e25518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
The chemical doping of silicon phthalocyanine dihydroxide (SiPc(OH)2), with (2E, 4Z)-5, 7-diphenylhepta-2, 4-dien-6-ynoic acids (DAc) with electron-withdrawing (BrDAc) and electron-donating (MeODAc) substituents is the main purpose of this work. Theoretical calculations were carried out on Gaussian16 software, with geometrical optimization of all involved species, and obtention of the highest occupied molecule orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and the respective energy gaps. The theoretical calculations show two hydrogen bridge formations: the first one as a peripheral interaction between the terminal oxygen atoms from the acid unit and hydrogen atoms from the phthalocyanine aromatic rings. The second one as the interaction at the nitrogen atoms of the phthalocyanine, which are compelled to form a new flat plane far from the original flat phthalocyanine deck. These organic semiconductors were deposited as thin films and characterized by IR spectroscopy, atomic force microscopy (AFM), and the optical parameters were gathered from UV-Vis studies. The indirect and direct optical band gap, the onset gap and the Urbach energy were obtained. In order to compare the effect of the acids as dopants of the silicon phthalocyanine, the SiPc(OH)2-DAc films were electrically characterized. The SiPc(OH)2-DAc films exhibit an ambipolar electrical behavior, which is influenced by the incidence of different lighting conditions at voltages above 0.3V. The glass/ITO/SiPc(OH)2-MeODAc/Ag reaches a maximum current of 5.68 × 10-5 A for natural light condition, while the glass/ITO/SiPc(OH)2-BrDAc/Ag, reaches a maximum current of 9.21 × 10-9 A for white illumination condition.
Collapse
Affiliation(s)
- María Elena Sánchez Vergara
- Facultad de Ingeniería, Universidad Anáhuac México, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan, 52786, Estado de México, Mexico
| | - Emilio I. Sandoval Plata
- Facultad de Ingeniería, Universidad Anáhuac México, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan, 52786, Estado de México, Mexico
| | - Ricardo Ballinas Indili
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n. C.U., Delegación Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - Roberto Salcedo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Cecilio Álvarez Toledano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n. C.U., Delegación Coyoacán, C.P. 04510, Ciudad de México, Mexico
| |
Collapse
|
3
|
Tsuneda T, Taketsugu T. Roles of Singlet Fission in the Photosensitization of Silicon Phthalocyanine. J Phys Chem Lett 2023; 14:11587-11596. [PMID: 38100084 DOI: 10.1021/acs.jpclett.3c02921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The roles of singlet fission in the triplet generation of silicon phthalocyanine (SiPc), a compound analogous to the IRDye700DX photosensitizer used in near-infrared photoimmunotherapy, are investigated by considering the energetical relation between the excitations of this compound. These excitations are obtained through spin-flip long-range corrected time-dependent density functional theory calculations. To initiate singlet fission, chromophores must meet two conditions: (1) near-degenerate low-lying singlet and quintet (triplet-triplet) excitations with a considerable energy gap of the lowest singlet and triplet excited states and (2) moderate π-stacking energy of chromophores, which is higher than but not far from the solvation energy, to facilitate the dissociation and generation of triplet-state chromophores. The present calculations demonstrate that SiPc satisfies both of these conditions after the formation of π-stacking irrespective of the presence of an axial ligand(s), suggesting that singlet fission plays a crucial role in the triplet generation process, although intersystem crossing occurs simultaneously at a very slow rate.
Collapse
Affiliation(s)
- Takao Tsuneda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Science Technology and Innovation, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
4
|
Xue R, Jiang W, He X, Xiong H, Xie G, Nie Z. The Adsorption Mechanisms of SF 6-Decomposed Species on Tc- and Ru-Embedded Phthalocyanine Surfaces: A Density Functional Theory Study. Molecules 2023; 28:7137. [PMID: 37894617 PMCID: PMC10608908 DOI: 10.3390/molecules28207137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Designing high-performance materials for the detection or removal of toxic decomposition gases of sulfur hexafluoride is crucial for both environmental monitoring and human health preservation. Based on first-principles calculations, the adsorption performance and gas-sensing properties of unsubstituted phthalocyanine (H2Pc) and H2Pc doped with 4d transition metal atoms (TM = Tc and Ru) towards five characteristic decomposition components (HF, H2S, SO2, SOF2, and SO2F2) were simulated. The findings indicate that both the TcPc and RuPc monolayers are thermodynamically and dynamically stable. The analysis of the adsorption energy indicates that H2S, SO2, SOF2, and SO2F2 underwent chemisorption on the TcPc monolayer. Conversely, the HF molecules were physisorbed through interactions with H atoms. The chemical adsorption of H2S, SO2, and SOF2 occurred on the RuPc monolayer, while the physical adsorption of HF and SO2F2 molecules was observed. Moreover, the microcosmic mechanism of the gas-adsorbent interaction was elucidated by analyzing the charge density differences, electron density distributions, Hirshfeld charges, and density of states. The TcPc and RuPc monolayers exhibited excellent sensitivity towards H2S, SO2, and SOF2, as evidenced by the substantial alterations in the band gaps and work functions of the TcPc and RuPc nanosheets. Our calculations hold significant value for exploring the potential chemical sensing applications of TcPc and RuPc monolayers in gas sensing, with a specific focus on detecting sulfur hexafluoride.
Collapse
Affiliation(s)
- Rou Xue
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; (R.X.); (X.H.)
| | - Wen Jiang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; (R.X.); (X.H.)
| | - Xing He
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; (R.X.); (X.H.)
| | - Huihui Xiong
- School of Metallurgy Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
| | - Gang Xie
- Kunming Metallurgical Research Institute Co., Ltd., Kunming 650031, China;
| | - Zhifeng Nie
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China; (R.X.); (X.H.)
| |
Collapse
|
5
|
Ke MR, Chen Z, Shi J, Wei Y, Liu H, Huang S, Li X, Zheng BY, Huang JD. A smart and visible way to switch the aromaticity of silicon(IV) phthalocyanines. Chem Commun (Camb) 2023; 59:9832-9835. [PMID: 37505224 DOI: 10.1039/d3cc02910g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Unlike traditional methods of modifying phthalocyanines (Pcs), we herein report a smart and visible way to switch the aromaticity of silicon(IV) phthalocyanines via a reversible nucleophilic addition reaction of the Pc skeleton induced by alkalis and acids, leading to an interesting allochroism phenomenon and the switching of photosensitive activities.
Collapse
Affiliation(s)
- Mei-Rong Ke
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Zixuan Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Jie Shi
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Ying Wei
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Hao Liu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Shuping Huang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Xingshu Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Bi-Yuan Zheng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Jian-Dong Huang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
6
|
King B, Radford CL, Vebber MC, Ronnasi B, Lessard BH. Not Just Surface Energy: The Role of Bis(pentafluorophenoxy) Silicon Phthalocyanine Axial Functionalization and Molecular Orientation on Organic Thin-Film Transistor Performance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36897075 DOI: 10.1021/acsami.2c22789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding the effect of surface chemistry on the dielectric-semiconductor interface, thin-film morphology, and molecular alignment enables the optimization of organic thin-film transistors (OTFTs). We explored the properties of thin films of bis(pentafluorophenoxy) silicon phthalocyanine (F10-SiPc) evaporated onto silicon dioxide (SiO2) surfaces modified by self-assembled monolayers (SAMs) of varying surface energies and by weak epitaxy growth (WEG). The total surface energy (γtot), dispersive component of the total surface energy (γd), and polar component of the total surface energy (γp) were calculated using the Owens-Wendt method and related to electron field-effect mobility of devices (μe), and it was determined that minimizing γp and matching γtot yielded films with the largest relative domain sizes and highest resulting μe. Subsequent analyses were completed using atomic force microscopy (AFM) and grazing-incidence wide-angle X-ray scattering (GIWAXS) to relate surface chemistry to thin-film morphology and molecular order at the surface and semiconductor-dielectric interface, respectively. Films evaporated on n-octyltrichlorosilane (OTS) yielded devices with the highest average μe of 7.2 × 10-2 cm2·V-1·s-1 that we attributed to it having both the largest domain length, which were extracted from power spectral density function (PSDF) analysis, and a subset of molecules with a pseudo edge-on orientation relative to the substrate. Films of F10-SiPc with the mean molecular orientation of the π-stacking direction being more edge-on relative to the substrate also generally resulted in OTFTs with a lower average VT. Unlike conventional MPcs, F10-SiPc films fabricated by WEG experienced no macrocycle in an edge-on configuration. These results demonstrate the critical role of the F10-SiPc axial groups on WEG, molecular orientation, and film morphology as a function of surface chemistry and the choice of SAMs.
Collapse
Affiliation(s)
- Benjamin King
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Chase L Radford
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Mário C Vebber
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Bahar Ronnasi
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, Ontario K1N 6N5, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Pvt., Ottawa, Ontario K1N 6N5, Canada
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
7
|
Comeau ZJ, Cranston RR, Lamontagne HR, Shuhendler AJ, Lessard BH. Strong Magnetic Field Annealing for Improved Phthalocyanine Organic Thin-Film Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206792. [PMID: 36567424 DOI: 10.1002/smll.202206792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Thin-film microstructure, morphology, and polymorphism can be controlled and optimized to improve the performance of carbon-based electronics. Thermal or solvent vapor annealing are common post-deposition processing techniques; however, it can be difficult to control or destructive to the active layer or substrates. Here, the use of a static, strong magnetic field (SMF) as a non-destructive process for the improvement of phthalocyanine (Pc) thin-film microstructure, increasing organic thin-film transistor (OTFTs) mobility by twofold, is demonstrated. Grazing incident wide-angle X-ray scattering (GIWAXS), X-ray diffraction (XRD), and atomic force microscopy (AFM) elucidate the effect of SMF on both para- and diamagnetic Pc thin-films when subjected to a magnetic field. A SMF is found to increase the concentration of oxygen-induced radical species within the Pc thin-film, lending a paramagnetic character to ordinarily diamagnetic metal-free Pc and resulting in magnetic field induced changes to its thin-film microstructures. In a nitrogen environment, without competing degradation effects of molecular oxygen, SMF processing is found to favorably improve charge transport characteristics and increase OTFT mobility. Thus, post-deposition thin-film annealing with a magnetic field is presented as an alternative and promising technique for future thin-film engineering applications.
Collapse
Affiliation(s)
- Zachary J Comeau
- University of Ottawa, Department of Chemical and Biological Engineering, 161 Louis Pasteur, Ottawa, ON, K1N6N5, Canada
- University of Ottawa, Department of Chemistry and Biomolecular Sciences, 150 Louis Pasteur, Ottawa, ON, K1N9A7, Canada
| | - Rosemary R Cranston
- University of Ottawa, Department of Chemical and Biological Engineering, 161 Louis Pasteur, Ottawa, ON, K1N6N5, Canada
| | - Halynne R Lamontagne
- University of Ottawa, Department of Chemical and Biological Engineering, 161 Louis Pasteur, Ottawa, ON, K1N6N5, Canada
- University of Ottawa, Department of Chemistry and Biomolecular Sciences, 150 Louis Pasteur, Ottawa, ON, K1N9A7, Canada
| | - Adam J Shuhendler
- University of Ottawa, Department of Chemistry and Biomolecular Sciences, 150 Louis Pasteur, Ottawa, ON, K1N9A7, Canada
- University of Ottawa, Department of Biology, 30 Marie Curie, Ottawa, ON, K1N9B4, Canada
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y4W7, Canada
| | - Benoît H Lessard
- University of Ottawa, Department of Chemical and Biological Engineering, 161 Louis Pasteur, Ottawa, ON, K1N6N5, Canada
- University of Ottawa, School of Electrical Engineering and Computer Science, 800 King Edward Ave, Ottawa, ON, K1N6N5, Canada
| |
Collapse
|
8
|
Octafluoro-Substituted Phthalocyanines of Zinc, Cobalt, and Vanadyl: Single Crystal Structure, Spectral Study and Oriented Thin Films. Int J Mol Sci 2023; 24:ijms24032034. [PMID: 36768358 PMCID: PMC9917058 DOI: 10.3390/ijms24032034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In this work, octafluoro-substituted phthalocyanines of zinc, vanadyl, and cobalt (MPcF8, M = Zn(II), Co(II), VO) were synthesized and studied. The structures of single crystals of the obtained phthalocyanines were determined. To visualize and compare intermolecular contacts in MPcF8, an analysis of Hirshfeld surfaces (HS) was performed. MPcF8 nanoscale thickness films were deposited by organic molecular beam deposition technique and their structure and orientation were studied using X-ray diffraction. Comparison of X-ray diffraction patterns of thin films with the calculated diffractograms showed that all three films consisted of a single crystal phase, which corresponded to a phase of single crystals. Only one strong diffraction peak corresponding to the plane (001) was observed on the diffraction pattern of each film, which indicated a strong preferred orientation with the vast majority of crystallites oriented with a (001) crystallographic plane parallel to the substrate surface. The effect of the central metals on the electronic absorption and vibrational spectra of the studied phthalocyanines as well as on the electrical conductivity of their films is also discussed.
Collapse
|
9
|
Sundaresan C, Vebber MC, Brusso JL, Tao Y, Alem S, Lessard BH. Low-Cost Silicon Phthalocyanine as a Non-Fullerene Acceptor for Flexible Large Area Organic Photovoltaics. ACS OMEGA 2023; 8:1588-1596. [PMID: 36643570 PMCID: PMC9835793 DOI: 10.1021/acsomega.2c07131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate large-area (1 cm2) organic photovoltaic (OPVs) devices based on bis(tri-n-butylsilyl oxide) silicon phthalocyanine (3BS)2-SiPc as a non-fullerene acceptor (NFA) with low synthetic complexity paired with poly(3-hexylthiophene) (P3HT) as a donor polymer. Environment-friendly nonhalogenated solvents were used to process large area OPVs on flexible indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates. An alternate sequentially (Alt-Sq) blade-coated active layer with bulk heterojunction-like morphology is obtained when using (3BS)2-SiPc processing with o-xylene/1,3,5-trimethylbenzene solvents. The sequential (Sq) active layer is prepared by first blade-coating (3BS)2-SiPc solution followed by P3HT coated on the top without any post-treatment. The conventional sequentially (Sq) blade-coated active layer presents very low performance due to the (3BS)2-SiPc bottom layer being partially washed off by processing the top layer of P3HT. In contrast, alternate sequentially (Alt-Sq) blade-coated layer-by-layer film shows even better device performance compared to the bulk heterojunction (BHJ) active layer. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and atomic force microscopy (AFM) reveal that the Alt-Sq processing of the active layer leads to a BHJ-like morphology with a well-intermixed donor-acceptor component in the active layer while providing a simpler processing approach to low-cost and large-scale OPV production.
Collapse
Affiliation(s)
- Chithiravel Sundaresan
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ONK1N 6N5, Canada
- Advanced
Electronics and Photonics Research Centre, National Research Council of Canada, Ottawa, ONK1A
0R6, Canada
| | - Mário C. Vebber
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ONK1N 6N5, Canada
| | - Jaclyn L. Brusso
- Department
of Chemistry and Biomolecular Science, University
of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ONK1N 6N5, Canada
| | - Ye Tao
- Advanced
Electronics and Photonics Research Centre, National Research Council of Canada, Ottawa, ONK1A
0R6, Canada
| | - Salima Alem
- Advanced
Electronics and Photonics Research Centre, National Research Council of Canada, Ottawa, ONK1A
0R6, Canada
| | - Benoît H. Lessard
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ONK1N 6N5, Canada
- School
of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward AvenueOttawa, ONK1N 6N5, Canada
| |
Collapse
|
10
|
Liu G, Guo Q, Huang B, Guan X, Ye Q, Zhuang X, Peng Y. Fluorinated/non-fluorinated triphenylamine axially substituted silicon phthalocyanine: Synthesis and photophysical properties. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Eltoukhi M, Fadda AA, Abdel-Latif E, Elmorsy MR. Low cost carbazole-based organic dyes bearing the acrylamide and 2-pyridone moieties for efficient dye-sensitized solar cells. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113760] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Sundaresan C, Josse P, Vebber MC, Brusso J, Lu J, Tao Y, Alem S, Lessard BH. Design of ternary additive for organic photovoltaics: a cautionary tale. RSC Adv 2022; 12:10029-10036. [PMID: 35424912 PMCID: PMC8965687 DOI: 10.1039/d2ra00540a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Silicon phthalocyanines as ternary additives are a promising way to increase the performance of organic photovoltaics. The miscibility of the additive and the donor polymer plays a significant role in the enhancement of the device performance, therefore, ternary additives can be designed to better interact with the conjugated polymer. We synthesized N-9′-heptadecanyl-2,7-carbazole functionalized SiPc ((CBzPho)2-SiPc), a ternary additive with increased miscibility in poly[N-90-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT). The resulting additive was included into PCDTBT and [6,6]-phenyl C71 butyric acid methyl ester as bulk (PC71BM) heterojunction OPV devices as a ternary additive. While the (CBzPho)2-SiPc demonstrated strong EQE >30% contribution in the range of 650–730 nm, the overall performance was reduced because (CBzPho)2-SiPc acted as a hole trap due to its high-lying HOMO energy level. This study demonstrates the importance of the solubility, miscibility, and energy level engineering of the ternary additive when designing organic photovoltaic devices. Silicon phthalocyanines with carbazole axial functional groups were synthesized to improve the miscibility in PCDTBT and for use as ternary additives in organic photovoltaics.![]()
Collapse
Affiliation(s)
- Chithiravel Sundaresan
- Department of Chemical & Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa ON K1N 6N5 Canada .,Advanced Electronics and Photonics Research Centre, National Research Council of Canada Ottawa ON K1A 0R6 Canada
| | - Pierre Josse
- Department of Chemical & Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa ON K1N 6N5 Canada .,Department of Chemistry and Biomolecular Science, University of Ottawa 150 Louis-Pasteur Pvt Ottawa ON K1N 6N5 Canada
| | - Mário C Vebber
- Department of Chemical & Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa ON K1N 6N5 Canada
| | - Jaclyn Brusso
- Department of Chemistry and Biomolecular Science, University of Ottawa 150 Louis-Pasteur Pvt Ottawa ON K1N 6N5 Canada
| | - Jianping Lu
- Advanced Electronics and Photonics Research Centre, National Research Council of Canada Ottawa ON K1A 0R6 Canada
| | - Ye Tao
- Advanced Electronics and Photonics Research Centre, National Research Council of Canada Ottawa ON K1A 0R6 Canada
| | - Salima Alem
- Advanced Electronics and Photonics Research Centre, National Research Council of Canada Ottawa ON K1A 0R6 Canada
| | - Benoît H Lessard
- Department of Chemical & Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa ON K1N 6N5 Canada .,School of Electrical Engineering and Computer Science, University of Ottawa 800 King Edward Ave. Ottawa ON K1N 6N5 Canada
| |
Collapse
|