1
|
Huang YH, Lu YL, Cao ZM, Zhang XD, Liu CH, Xu HS, Su CY. Multipocket Cage Enables the Binding of High-Order Bulky and Drug Guests Uncovered by MS Methodology. J Am Chem Soc 2024; 146:21677-21688. [PMID: 39042557 DOI: 10.1021/jacs.4c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Achieving high guest loading and multiguest-binding capacity holds crucial significance for advancement in separation, catalysis, and drug delivery with synthetic receptors; however, it remains a challenging bottleneck in characterization of high-stoichiometry guest-binding events. Herein, we describe a large-sized coordination cage (MOC-70-Zn8Pd6) possessing 12 peripheral pockets capable of accommodating multiple guests and a high-resolution electrospray ionization mass spectrometry (HR-ESI-MS)-based method to understand the solution host-guest chemistry. A diverse range of bulky guests, varying from drug molecules to rigid fullerenes as well as flexible host molecules of crown ethers and calixarenes, could be loaded into open pockets with high capacities. Notably, these hollow cage pockets provide multisites to capture different guests, showing heteroguest coloading behavior to capture binary, ternary, or even quaternary guests. Moreover, a pair of commercially applied drugs for the combination therapy of chronic lymphocytic leukemia (CLL) has been tested, highlighting its potential in multidrug delivery for combined treatment.
Collapse
Affiliation(s)
- Yin-Hui Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Lin Lu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhong-Min Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Dong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen-Hui Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hai-Sen Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Xiao Z, Lin H, Drake HF, Diaz J, Zhou HC, Pellois JP. Investigating the Cell Entry Mechanism, Disassembly, and Toxicity of the Nanocage PCC-1: Insights into Its Potential as a Drug Delivery Vehicle. J Am Chem Soc 2023; 145:27690-27701. [PMID: 38069810 PMCID: PMC10863074 DOI: 10.1021/jacs.3c09918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
The porous coordination cage PCC-1 represents a new platform potentially useful for the cellular delivery of drugs with poor cell permeability and solubility. PCC-1 is a metal-organic polyhedron constructed from zinc metal ions and organic ligands through coordination bonds. PCC-1 possesses an internal cavity that is suitable for drug encapsulation. To better understand the biocompatibility of PCC-1 with human cells, the cell entry mechanism, disassembly, and toxicity of the nanocage were investigated. PCC-1 localizes in the nuclei and cytoplasm within minutes upon incubation with cells, independent of endocytosis and cargo, suggesting direct plasma membrane translocation of the nanocage carrying its guest in its internal cavity. Furthermore, the rates of cell entry correlate to extracellular concentrations, indicating that PCC-1 is likely diffusing passively through the membrane despite its relatively large size. Once inside cells, PCC-1 disintegrates into zinc metal ions and ligands over a period of several hours, each component being cleared from cells within 1 day. PCC-1 is relatively safe for cells at low micromolar concentrations but becomes inhibitory to cell proliferation and toxic above a concentration or incubation time threshold. However, cells surviving these conditions can return to homeostasis 3-5 days after exposure. Overall, these findings demonstrate that PCC-1 enters live cells by crossing biological membranes spontaneously. This should prove useful to deliver drugs that lack this capacity on their own, provided that the dosage and exposure time are controlled to avoid toxicity.
Collapse
Affiliation(s)
- Zhifeng Xiao
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hannah F. Drake
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Joshua Diaz
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jean-Philippe Pellois
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Sheng TP, Sun CZ, Dai FR. Triphenylamine-Functionalized Coordination Cage as a Supramolecular Fluorescence Sensor for Sequential Detection of Aluminum Ions and Nitrofurantoin. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37294737 DOI: 10.1021/acsami.3c01422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coordination cages with a well-defined nanocavity are a class of promising supramolecular materials for molecular recognition and sensing. However, their applications in sequential sensing of multiple types of pollutants are highly desirable yet extremely limiting and challenging. Herein, we demonstrate a convenient strategy to develop a supramolecular fluorescence sensor for sequentially detecting environmental pollutants of aluminum ions and nitrofurantoin. A coordination cage (Ni-NTB), adopting an octahedral structure with triphenylamine chromophores occupying on the faces, is weakly emissive in solution due to the intramolecular rotations of the phenyl rings. Ni-NTB exhibits sensitive and selective fluorescence "off-on-off" processes during consecutive sensing of Al3+ and nitrofurantoin, an antibacterial drug. These sequential detection processes are highly interference-tolerant and visually observable with the naked eye. Mechanism studies reveal that the fluorescence switch is controllable by tuning the degree of intramolecular rotations of the phenyl rings and the pathway of intermolecular charge transfer, which is associated with the host-guest interaction. Moreover, the fabrication of Ni-NTB on test strips enabled a quick naked-eye sequential sensing of Al3+ and nitrofurantoin in seconds. Hence, this novel supramolecular fluorescence "off-on-off" sensing platform provides a new approach to developing supramolecular functional materials for monitoring environmental pollution.
Collapse
Affiliation(s)
- Tian-Pu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng-Zhe Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Feng-Rong Dai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Hazarika B, Singh VP. Macrocyclic supramolecular biomaterials in anti-cancer therapeutics. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
5
|
Yang K, Kotak HA, Haynes CJ. Metal-organic ion transport systems. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Assembly of three sulfonylcalix[4]arene-based multinuclear complexes: Tunable structures and guest encapsulation properties. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|