1
|
Shu Q, Hou X, Cao Q, Ye X, Li D, Zhao D, Wang C, Yang G, Xie L, Suo G. Novel Electrospun Sn-Based Composite Cathodes Exhibiting Extended Cycle Life for Hybrid Magnesium-Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38655816 DOI: 10.1021/acsami.4c01918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In this study, we present a strategic approach for the structural design and composite modification of one-dimensional Sn-based nanocomposites to enhance the overall electrochemical performance of hybrid magnesium-lithium batteries (MLIBs), which are emerging as promising successors to lithium-ion batteries. By using electrospinning technology, we successfully synthesized NST-SnO2, NST-SnO2-NiO, Sn-CNF, and Ni3Sn2-CNF composite cathodes, as well as analyzed the synthesis mechanism of the four Sn-based cathodes. The 100-cycle testing at a current density of 500 mA·g-1 revealed that NST-SnO2 maintained a discharge specific capacity of 129.8 mA h·g-1 with a retention rate of 90.76%, while NST-SnO2-NiO achieved a higher capacity of 147.4 mA h·g-1 and an 88.05% retention rate. Notably, Sn-CNF and Ni3Sn2-CNF exhibited initial discharge capacities of 66.7 and 79.6 mA h·g-1, respectively, coupled with exceptional cycle stability, evidenced by retention rates of 104.19 and 102.38%. The remarkable cycling stability observed in these novel cathodes is attributed to their robust structural integrity, thus demonstrating the potential for an extended cycle life in MLIBs. This work provides significant advancement in the development of high-performance electrode materials for next-generation hybrid magnesium-lithium energy storage systems.
Collapse
Affiliation(s)
- Qiang Shu
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaojiang Hou
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qianhong Cao
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaohui Ye
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Danting Li
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Duode Zhao
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chenlu Wang
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guang Yang
- College of Mechanical & Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lishuai Xie
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing 211167, China
| | - Guoquan Suo
- School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
2
|
Jena S, Tran DT, Park S, Islam M, Kim NH, Lee JH. An Ultra-Flexible Sodium-Ion Full Cell with High Energy/Power Density and Unprecedented Structural Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305088. [PMID: 37817353 DOI: 10.1002/smll.202305088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/11/2023] [Indexed: 10/12/2023]
Abstract
Futuristic wearable electronics desperately need power sources with similar flexibility and durability. In this regard, the authors, therefore, propose a scalable PAN-PMMA blend-derived electrospinning protocol to fabricate free-standing electrodes comprised of cobalt hexacyanoferrate nanocube cathode and tin metal organic framework-derived nanosphere anode, respectively, for flexible sodium-ion batteries. The resulting unique inter-networked nanofiber mesh offers several advantages such as robust structural stability towards repeated bending and twisting stresses along with appreciable electronic/ionic conductivity retention without any additional post-synthesis processing. The fabricated flexible sodium ion full cells deliver a high working voltage of 3.0 V, an energy density of 273 Wh·kg-1 , and a power density of 2.36 kW·kg-1 . The full cells retain up to 86.73% of the initial capacity after 1000 cycles at a 1.0 C rate. After intensive flexibility tests, the full cells also retain 78.26% and 90.78% of the initial capacity after 1000 bending and twisting cycles (5 mm radius bending and 40o axial twisting), respectively. This work proves that the proposed approach can also be employed to construct similar robust, free-standing nanofiber mesh-based electrodes for mass-producible, ultra-flexible, and durable sodium ion full cells with commercial viability.
Collapse
Affiliation(s)
- Sambedan Jena
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | - Duy Thanh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | - Sehwi Park
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | - Muhaiminul Islam
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
- Center for Carbon Composite Materials, Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| |
Collapse
|
3
|
Sun Y, Yang YL, Chen HJ, Liu J, Shi XL, Suo G, Hou X, Ye X, Zhang L, Lu S, Chen ZG. Flexible, recoverable, and efficient photocatalysts: MoS 2/TiO 2 heterojunctions grown on amorphous carbon-coated carbon textiles. J Colloid Interface Sci 2023; 651:284-295. [PMID: 37542903 DOI: 10.1016/j.jcis.2023.07.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Most traditional powder photocatalysts are not easily recovered. Herein, we report a flexible and recoverable photocatalyst with superior photocatalytic activity, in which MoS2/TiO2 heterojunctions are grown on amorphous carbon-coated carbon textiles (CT@C-MoS2/TiO2). Recoverable CT@C-MoS2/TiO2 textile was used to degrade 10 mg L-1 rhodamine B, leading to a degradation rate of up to 98.8 % within 30 min. Such a degradation rate is much higher than that of most of the reported studies. A density functional theory (DFT) calculation results illustrate charge transfer mechanism inside TiO2-C, MoS2-C, and MoS2/TiO2 heterojunctions, which shows that CT@C-MoS2/TiO2 textile with three electron separation channels has a high photogenerated carrier separation rate, which remarkably enhances the photocatalytic activity. Our work provides a novel strategy to design an efficient and recoverable photocatalyst with high activity.
Collapse
Affiliation(s)
- Yu Sun
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan-Ling Yang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Hua-Jun Chen
- School of Environment and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Jiajun Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiao-Lei Shi
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Guoquan Suo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaojiang Hou
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaohui Ye
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Li Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi-Gang Chen
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
4
|
Xi Y, Lu Y. Mechanochemical synthesis of Fe/Mn-based binary hexacyanoferrate for sodium-ion battery. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Lee M, Kim MS, Oh JM, Park JK, Paek SM. Hybridization of Layered Titanium Oxides and Covalent Organic Nanosheets into Hollow Spheres for High-Performance Sodium-Ion Batteries with Boosted Electrical/Ionic Conductivity and Ultralong Cycle Life. ACS NANO 2023; 17:3019-3036. [PMID: 36700565 DOI: 10.1021/acsnano.2c11699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
While development of a sodium-ion battery (SIB) cathode has been approached by various routes, research on compatible anodes for advanced SIB systems has not been sufficiently addressed. The anode materials based on titanium oxide typically show low electrical performances in SIB systems primarily due to their low electrical/ionic conductivity. Thus, in this work, layered titanium oxides were hybridized with covalent organic nanosheets (CONs), which exhibited excellent electrical conductivity, to be used as anodes in SIBs. Moreover, to enlarge the accessible areas for sodium ions, the morphology of the hybrid was formulated in the form of a hollow sphere (HS), leading to the highly enhanced ionic conductivity. This synthesis method was based on the expectation of synergetic effects since titanium oxide provides direct electrostatic sodiation sites that shield organic components and CON supports high electrical and ionic conductivity with polarizable sodiation sites. Therefore, the hybrid shows enhanced and stable electrochemical performances as an anode for up to 2600 charge/discharge cycles compared to the HS without CONs. Furthermore, the best reversible capacities obtained from the hybrid were 426.2 and 108.5 mAh/g at current densities of 100 and 6000 mA/g, which are noteworthy results for the TiO2-based material.
Collapse
Affiliation(s)
- Minseop Lee
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Min-Sung Kim
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Jin Kuen Park
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Seung-Min Paek
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Pan Q, Tong Z, Su Y, Zheng Y, Shang L, Tang Y. Flat-Zigzag Interface Design of Chalcogenide Heterostructure toward Ultralow Volume Expansion for High-Performance Potassium Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203485. [PMID: 35962631 DOI: 10.1002/adma.202203485] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Heterostructure construction of layered metal chalcogenides can boost their alkali-metal storage performance, where the charge transfer kinetics can be promoted by the built-in electric fields. However, these heterostructures usually undergo interface separation due to severe layer expansion, especially for large-size potassium accommodation, resulting in the deconstruction of heterostructures and battery performance fading. Herein, first a stable interface design strategy where two metal chalcogenides with totally different layer-morphologies are stacked to form large K+ transport channels, rendering ultralow interlayer expansion, is presented. As a proof of concept, the flat-zigzag MoS2 /Bi2 S3 heterostructures stacked with zigzag-morphology Bi2 S3 and flat-morphology MoS2 present an ultralow expansion ratio (1.98%) versus MoS2 (9.66%) and Bi2 S3 (9.61%), which deliver an ultrahigh potassium storage capacity of above 600 mAh g-1 and capacity retention of 76% after 500 cycles, together with the built-in electric field of heterostructures. Once the heterostructures are used as an anode for potassium-based dual-ion batteries (K-DIBs), it achieves a superior full-cell capacity of ≈166 mAh g-1 with a capacity retention of 71% after 400 cycles, which is an outstanding performance among the reported K-DIBs. This proposed interface stacking strategy may offer a new way toward stable heterostructure design for metal ions storage and transport applications.
Collapse
Affiliation(s)
- Qingguang Pan
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Zhaopeng Tong
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanqiang Su
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongping Zheng
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Lin Shang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
7
|
Tian MW, Abed AM, Yan SR, Sajadi SM, Mahmoud MZ, Aybar HS, Smaisim GF. RETRACTED:Economic cost and numerical evaluation of cooling of a cylindrical lithium-ion battery pack using air and phase change materials. JOURNAL OF ENERGY STORAGE 2022; 52:104925. [DOI: 10.1016/j.est.2022.104925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
8
|
Hu X, Zhu R, Wang B, Liu X, Wang H. Dual Regulation of Metal Doping and Adjusting Cut-Off Voltage for MoSe 2 to Achieve Reversible Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200437. [PMID: 35714299 DOI: 10.1002/smll.202200437] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/19/2022] [Indexed: 06/15/2023]
Abstract
MoSe2 , as a typical 2D material, possesses tremendous potential in Na-ion batteries (SIBs) owing to larger interlayer distance, more favorable band gap structure, and higher theoretical specific capacity than other analogs. Nevertheless, the low intrinsic electronic conductivity and irreversible conversion of discharged products of Mo/Na2 Se to MoSe2 seriously hamper its electrochemical performance. Herein, through a facile hydrothermal method combined with calcination process, Sn-doped MoSe2 nanosheets grown on graphene substrate in the vertical direction are fabricated. Benefiting from the improved electronic conductivity contributed by the abundant defects and expanded interlamellar spacing of MoSe2 originated from Sn doping, combined with a smart strategy of raising discharge cut-off voltage to 0.2 V during the actual performance testing for SIBs, the as-fabricated anode material delivers superior Na-ions storage performance in terms of electrons/ions transfer, reversible sodium storage as well as cycle stability. An ultra-stable reversible specific capacity of 268.5 mAh g-1 at 1 A g-1 can be maintained after 1600 cycles. Moreover, the great sodium storage property in the SIB full-cell system of the as-obtained nanocomposite illustrates practical potential. Density functional theory calculation and in situ/ex situ measurements are employed to further reveal the storage mechanism and process of Na-ions.
Collapse
Affiliation(s)
- Xuejiao Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an, 710127, P. R. China
| | - Ruiyu Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an, 710127, P. R. China
| | - Beibei Wang
- Shaanxi Joint Lab of Graphene (NWU), Xi'an, 710127, P. R. China
- State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China
| | - Xiaojie Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an, 710127, P. R. China
| | - Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials science, Northwest University, Xi'an, 710127, P. R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an, 710127, P. R. China
| |
Collapse
|
9
|
Cao Y, Sharma K, Rajhi AA, Alamri S, Anqi AE, El-Shafay A, Aly AA, Felemban BF, Rashidi S, Derakhshandeh M. Boron-carbide nanosheets: Promising anodes for Ca-ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
10
|
Feng L, Liu J, Abu-Hamdeh NH, Bezzina S, Eshaghi Malekshah R. Molecular dynamics and quantum simulation of different cationic dyes removal from contaminated water using UiO-66 (Zr)-(COOH)2 metal–organic framework. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Potential of Vanadium (V) doped CNT(10, 0) and Manganese (Mn) doped carbon nanocage (C60) as catalysts for oxygen reduction reaction in fuel cells. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Majdi HS, Latipov ZA, Borisov V, Yuryevna NO, Kadhim MM, Suksatan W, Khlewee IH, Kianfar E. Nano and Battery Anode: A Review. NANOSCALE RESEARCH LETTERS 2021; 16:177. [PMID: 34894321 PMCID: PMC8665917 DOI: 10.1186/s11671-021-03631-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/19/2021] [Indexed: 05/10/2023]
Abstract
Improving the anode properties, including increasing its capacity, is one of the basic necessities to improve battery performance. In this paper, high-capacity anodes with alloy performance are introduced, then the problem of fragmentation of these anodes and its effect during the cyclic life is stated. Then, the effect of reducing the size to the nanoscale in solving the problem of fragmentation and improving the properties is discussed, and finally the various forms of nanomaterials are examined. In this paper, electrode reduction in the anode, which is a nanoscale phenomenon, is described. The negative effects of this phenomenon on alloy anodes are expressed and how to eliminate these negative effects by preparing suitable nanostructures will be discussed. Also, the anodes of the titanium oxide family are introduced and the effects of Nano on the performance improvement of these anodes are expressed, and finally, the quasi-capacitive behavior, which is specific to Nano, will be introduced. Finally, the third type of anodes, exchange anodes, is introduced and their function is expressed. The effect of Nano on the reversibility of these anodes is mentioned. The advantages of nanotechnology for these electrodes are described. In this paper, it is found that nanotechnology, in addition to the common effects such as reducing the penetration distance and modulating the stress, also creates other interesting effects in this type of anode, such as capacitive quasi-capacitance, changing storage mechanism and lower volume change.
Collapse
Affiliation(s)
- Hasan Sh. Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon, 51001 Iraq
| | | | - Vitaliy Borisov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Nedorezova Olga Yuryevna
- Department of Legal and Social Sciences, Naberezhnye Chelny Institute, Kazan Federal University, Kazan, Russia
| | - Mustafa M. Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001 Iraq
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
| | - Ibrahim Hammoud Khlewee
- Department of Prosthodontics, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ehsan Kianfar
- Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arāk, Iran
- Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
| |
Collapse
|