1
|
Yang R, Zhao X, Li Y, Wang J, Zhou K, Yang S, Li Y, E T. Fe δ+ diaspora titanium dioxide and graphene: A study of conductive powder materials and coating applications. J Colloid Interface Sci 2025; 684:512-522. [PMID: 39799633 DOI: 10.1016/j.jcis.2025.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Developing new conductive primers to ensure electrostatic spraying is crucial in response to the call for lightweight production of new energy vehicles. We report a stabilized material, Fe-T/G, of Fe-doped TiO2 composite graphene synthesized by a simple hydrothermal and electrostatic self-assembly method. The resistivity decreases from 0.9165 Ω·cm to 0.0943 Ω·cm for T/G. XPS and EPR confirm that Fe3+ is doped into the TiO2 lattice to generate OVs, and Feδ+ is introduced to activate the surrounding Fe-Ti active sites to break the obstruction of the Ti-O bond and build the Ti-O-C and Feδ+-O-C bonds between TiO2 and graphene to connect the two tightly. Multiple electron transfer channels promote Feδ+ impurity energy levels in the TiO2 valence and conduction bands to build electron leaping pathways, enhancing the electron transport ability. Based on this, Fe-T/G can be used as a conductive coating material to develop various insulator surfaces. With Fe-T/G powder material and PVDF, a conductive primer coating can be made and overlaid on a plastic plate to simulate actual applications. The resistance can still be maintained below 25 Ω·cm. Through contact angle experiments, it has been confirmed that the superhydrophobic surface has a water contact angle of 142.8°, with self-cleaning potential.
Collapse
Affiliation(s)
- Ruimeng Yang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013 Liaoning, China
| | - Xianyi Zhao
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013 Liaoning, China
| | - Yating Li
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013 Liaoning, China
| | - Junbo Wang
- BAOTi Huashen Titanium Industry Co., Ltd, Jinzhou 121000 Liaoning, China
| | - Kexin Zhou
- BAOTi Huashen Titanium Industry Co., Ltd, Jinzhou 121000 Liaoning, China
| | - Shuyi Yang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013 Liaoning, China
| | - Yun Li
- Chemistry & Chemical Engineering of College Yantai University, Yantai 264005 Shandong, China.
| | - Tao E
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013 Liaoning, China.
| |
Collapse
|
2
|
Liu H, Tian A, Liu T, Ying J. Syntheses and performance study of three POM-viologen compounds with photo- and electric-stimulation response. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125143. [PMID: 39299071 DOI: 10.1016/j.saa.2024.125143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In recent years, stimulus responsive materials have received widespread attention. Under solvothermal conditions, three polyoxometalates-viologen organic-inorganic hybrid compounds were successfully constructed by combining a viologen ligand 1-(3-Nitro-benzyl)-[4,4']bipyridinyl-1-ium bromide (1,3-nibipy·Br) with octamolybdate, namely [Cu2(1,3-nibipy)4(H2O)2(β-Mo8O26)2]·2H2O (1), [Cu2(1,3-nibipy)4(H2O)4(β-Mo8O26)]·(β-Mo8O26) (2) and (1,3-Hnibipy)2·(β-Mo8O26) (3). These three compounds can exhibit color changing properties under both light and electrical stimulation. Through characterizations of PXRD, FT-IR, UV-vis spectra, XPS, EPR, CV, and other tests, the photochromic and electrochromic properties of these three compounds are caused by the generation of viologen radicals. Compounds 1-3 have a rapid photoresponse efficiency and can be made into mixed matrix films for use as ultraviolet detectors. In addition, coated filter paper synthesized from acetonitrile and compounds can serve as an innovative erasable ink-free printing material medium, which is suitable for various erasable ink-free printing and anti-counterfeiting fields. We further investigated the electrochromic devices prepared from compounds 1-3, which achieved color change at a voltage of around -0.2 V and exhibited good stability after 500 cycles.
Collapse
Affiliation(s)
- Huan Liu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China.
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
3
|
Depijan M, Hantanasirisakul K, Pakawatpanurut P. Interfacial Engineering of Ti 3C 2T x MXene Electrode Using g-C 3N 4 Nanosheets for High-Performance Supercapacitor in Neutral Electrolyte. ACS OMEGA 2024; 9:22256-22264. [PMID: 38799366 PMCID: PMC11112722 DOI: 10.1021/acsomega.4c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024]
Abstract
The superior performance of the Ti3C2Tx (MXene)-based supercapacitor in acidic electrolytes has recently gained much interest in the energy storage community. Nevertheless, its performance in most neutral electrolytes is unfavorably low, plausibly due to limited ion diffusion between the MXene layers. Herein, protonated g-C3N4 (pg-C3N4) is incorporated into the Ti3C2Tx electrode by using a facile self-assembling process and annealing, which results in increased interlayer d-spacing and electrical conductivity of the composite electrode. As a result, the annealed Ti3C2Tx/pg-C3N4 film revealed an enhanced ion-accessibility and gravimetric capacitance of 140 F g-1 in 1 M aqueous MgSO4 electrolyte. The cyclic stability test also indicates excellent capacitance retention, with negligible loss of capacitance over 10000 cycles.
Collapse
Affiliation(s)
- Manopat Depijan
- Department
of Chemistry, Center of Excellence for Innovation in Chemistry, and
Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Kanit Hantanasirisakul
- Centre
of Excellence for Energy Storage Technology (CEST), Department of
Chemical and Biomolecular Engineering, School of Energy Science and
Engineering, Vidyasirimedhi Institute of
Science and Technology, Wangchan Valley, Rayong 21210, Thailand
| | - Pasit Pakawatpanurut
- Department
of Chemistry, Center of Excellence for Innovation in Chemistry, and
Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Gong Y, Liu T, Yang M, Tian A, Ying J. A series of viologen/POM materials with discoloration properties under the stimulation of X-ray, UV, electricity, and organic amines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124154. [PMID: 38492466 DOI: 10.1016/j.saa.2024.124154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
At present, viologen-based compounds can undergo reversible chemical/physical changes under external stimuli such as light and electricity. This makes these compounds have potential applications in smart windows, displays, and sensors. In order to obtain such materials, three viologen-POM inorganic-organic hybrid compounds have been successfully synthesized by a hydrothermal method, namely {[Cu2(cybpy)8(α-P2W18O62)2}·18H2O (1), (Hbpy)·(cybpy)·[H4(α-P2W18O62)]}·32H2O (2) and {(Hcybpy)2(β-Mo8O26)}·2H2O (3) (cybpy·Br = 1-cyclobutylmethyl-[4,4']bipyridinyl-1-ium bromide, bpy = 4,4'-bipyridine). Three compounds exhibit good discoloration behaviors under various external stimuli, especially under the stimulation of X-ray, UV, electricity, and organic amines. In addition, in order to promote the compounds in the actual production of more applications, they were doped into the polymer matrix to construct hybrid films, which not only have the same response to external stimulation but also increase the repeatability of the photochromic process. Moreover, 1-3 powder samples in ethanol solution were ultrasonic treated and deposited on filter paper, which can be successfully used in erasable inkless printing.
Collapse
Affiliation(s)
- Yuan Gong
- Department of Chemistry, Bohai University, Jinzhou 121013, PR China
| | - Tao Liu
- Department of Chemistry, Bohai University, Jinzhou 121013, PR China
| | - Mengle Yang
- Department of Chemistry, Bohai University, Jinzhou 121013, PR China.
| | - Aixiang Tian
- Department of Chemistry, Bohai University, Jinzhou 121013, PR China
| | - Jun Ying
- Department of Chemistry, Bohai University, Jinzhou 121013, PR China.
| |
Collapse
|
5
|
Ji C, E T, Cheng Y, Yang S, Chen L, Wang D, Wang Y, Li Y. Preparation of Mn modified waste dander biochar and its effect on soil carbon sequestration. ENVIRONMENTAL RESEARCH 2024; 247:118147. [PMID: 38220076 DOI: 10.1016/j.envres.2024.118147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
In order to reduce the mineralization of soil organic carbon (SOC) and enhance the ability of soil carbon sequestration. Mn-modified waste dander biochar (Mn-BC) was successfully prepared via impregnation and pyrolysis, and MnSO4 was formed on its surface. Mn-BC increases the carbon retention and reduces the emissions of CO2 and SO2 in way of forming CO, Mn-O-C bond and MnSO4. At the same time, the stability of the original biochar was reserved due to forming a conjugated structure (CC and pyridine-N bond), and the carbon sequestration content was increased to 25.63%. Importantly, the application of Mn-BC can directly regulate the transformation of microbial bacterial community and lead to create stable carbon dominant bacteria (Firmicutes). And the mineralization rate of SOC is reduced to 0.48 mg CO2/(g·d), together with an increased content of TOC (48.16%), thus the purpose of efficient carbon sequestration is achieved in soil.
Collapse
Affiliation(s)
- Cheng Ji
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Tao E
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China.
| | - Ying Cheng
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Shuyi Yang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Liang Chen
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Daohan Wang
- Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Yuanfei Wang
- Liaoning Huadian Environmental Testing Co., LTD, Jinzhou, 121013, Liaoning, China
| | - Yun Li
- Chemistry & Chemical Engineering of College Yantai University, Yantai, 264005, China.
| |
Collapse
|
6
|
Wang X, Liu S, Lin S, Qi K, Yan Y, Ma Y. Visible Light Motivated the Photocatalytic Degradation of P-Nitrophenol by Ca 2+-Doped AgInS 2. Molecules 2024; 29:361. [PMID: 38257274 PMCID: PMC11487403 DOI: 10.3390/molecules29020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
4-Nitrophenol (4-NP) is considered a priority organic pollutant with high toxicity. Many authors have been committed to developing efficient, green, and environmentally friendly technological processes to treat wastewater containing 4-NP. Here, we investigated how the addition of Ca2+ affects the catalytic degradation of 4-NP with AgInS2 when exposed to light. We synthesized AgInS2 (AIS) and Ca2+-doped AgInS2 (Ca-AIS) with varying amounts of Ca2+ using a low-temperature liquid phase method. The SEM, XRD, XPS, HRTEM, BET, PL, and UV-Vis DRS characteristics were employed to analyze the structure, morphology, and optical properties of the materials. The effects of different amounts of Ca2+ on the photocatalytic degradation of 4-NP were investigated. Under visible light illumination for a duration of 120 min, a degradation rate of 63.2% for 4-Nitrophenol (4-NP) was achieved. The results showed that doping with an appropriate amount of Ca2+ could improve the visible light catalytic activity of AIS. This work provides an idea for finding suitable cheap alkaline earth metal doping agents to replace precious metals for the improvement of photocatalytic activities.
Collapse
Affiliation(s)
- Xuejiao Wang
- College of Pharmacy, Dali University, Dali 671000, China; (X.W.); (S.L.); (S.L.)
| | - Shuyuan Liu
- College of Pharmacy, Dali University, Dali 671000, China; (X.W.); (S.L.); (S.L.)
| | - Shu Lin
- College of Pharmacy, Dali University, Dali 671000, China; (X.W.); (S.L.); (S.L.)
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, China; (X.W.); (S.L.); (S.L.)
| | - Ya Yan
- College of Pharmacy, Dali University, Dali 671000, China; (X.W.); (S.L.); (S.L.)
| | - Yuhua Ma
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| |
Collapse
|
7
|
Mo Y, Yang Y, Zeng J, Ma W, Guan Y, Guo J, Wu X, Liu D, Feng L, Jia X, Yang B. Enhancing the Biopharmacological Characteristics of Asperosaponin VI: Unveiling Dynamic Self-Assembly Phase Transitions in the Gastrointestinal Environment. Int J Nanomedicine 2023; 18:7335-7358. [PMID: 38084126 PMCID: PMC10710790 DOI: 10.2147/ijn.s436372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE Asperosaponin VI (ASP VI) as an active ingredient of Dipsacus asperoides, which has a wide range of biological and pharmacological activity. However, its development and application are restricted due to the poor gastrointestinal permeability and oral bioavailability. This investigation aims to reveal the influence of the self-assembled structure by the interaction between ASP VI and endogenous components NaTC and/or DOPC in the gastrointestinal environment on its biopharmaceutical properties, and novelty elucidated the molecular mechanism for the formation of self-assembled nanomicelles. METHODS This change in phase state in gastrointestinal fluids is characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). UPLC-Q-TOF-MS was used to analyze the composition of phase components and the exposure of nanomicelles in vivo. Molecular dynamics simulation (MDS) was applied to preliminarily elucidate the self-assembly mechanism of ASP VI in the gastrointestinal environment. Furthermore, theS8 promoting absorption mechanism of nanomicelles were investigated through in vivo pharmacokinetic experiments, parallel artificial membrane permeability assay (PAMPA), quadruple single-pass intestinal perfusion in rats, and Caco-2 cell monolayer model. RESULTS We demonstrated that the ASP VI could spontaneously form dynamic self-assembled structures with sodium taurocholate (NaTC) and dipalmitoyl phosphatidylcholine (DOPC) during gastrointestinal solubilization, which promoted the gastrointestinal absorption and permeability of ASP VI and increased its exposure in vivo, thus improving the biopharmacological characteristics of ASP VI. Moreover, ASP VI-NaTC-DOPC-self-assembled nanostructures (ASP VI-NaTC-DOPC-SAN) manifested higher cellular uptake in Caco-2 cells as evidenced by flow cytometry and confocal microscopy, and this study also preliminarily revealed the mechanism of self-assembly formation of ASP VI with endogenous components NaTC and DOPC driven by electrostatic and hydrogen bonding interactions. CONCLUSION This study provides evidence that the dynamic self-assembled phase transition may play a key role in improving the biopharmacological characteristics of insoluble or low permeability active ingredients during the gastrointestinal dissolution of Chinese medicines.
Collapse
Affiliation(s)
- Yulin Mo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Weikun Ma
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yuxin Guan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jingxi Guo
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaochun Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Dingkun Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| |
Collapse
|
8
|
Lu Q, Ying J, Tian A, Wang X. A Series of POM-Viologen Photo-/Electrochromic Hybrids and Hydrogels Acting as Multifunctional Sensors for Detecting UV, Hg 2+, and Organic Amines. Inorg Chem 2023; 62:16617-16626. [PMID: 37769325 DOI: 10.1021/acs.inorgchem.3c02743] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
In this work, POM anions were introduced into the viologen system in order to synthesize POM-viologen hybrid compounds with excellent properties. Three new POM-viologen compounds, {CdII(tybipy)(DMF)2[β-Mo8O26]0.5Cl} (1), {CoII(tybipy)2(DMF)2[H2(β-Mo8O26)]2}·4C2H7N (2), and (tybipy)4·(β-Mo8O26) (3) (tybipy·Br = 1-thiophen-3-ylmethyl-[4,4']bipyridinyl-1-ium bromide), have been prepared by a solvothermal method, and their structures were characterized. POM anions are modified by mixing organic ligands with transition metals in compounds 1 and 2. However, compound 3 is a supramolecular structure constructed by hydrogen bonding interactions between the dissociative viologen and POM anions. These three compounds have rapid photoresponse and photochromic ability, which can be made into mixed matrix membranes and hydrogels for UV detection. The rigid sandwich devices prepared by compounds 1-3 have achieved ultrafast electrochromism and recovery. In addition, photochromic hydrogels based on compounds 1-3 can achieve ultrafast photochromic recovery. Compounds 1-3 can be used in ink-free printing and Hg2+ fluorescence detecting. Compounds 1 and 2 can also be used as organic amine detectors. Combined with photochromism and fluorescence detection of Hg2+, visual test papers for Hg2+, Cu2+, and Co2+ were successfully realized, which can improve the portability and detection speed of heavy metal ions in the actual environment.
Collapse
Affiliation(s)
- Qinghai Lu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
9
|
Qin S, Sun H, Wan X, Wu Y, Lin X, Kan H, Hou D, Zheng Z, He X, Liu C. Carboxymethylcellulose reinforced starch films and rapid detection of spoiled beverages. Front Bioeng Biotechnol 2023; 10:1099118. [PMID: 36686261 PMCID: PMC9852863 DOI: 10.3389/fbioe.2022.1099118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 01/08/2023] Open
Abstract
The integrity of the packaging of a liquid foodstuff makes it difficult to detect spoilage. Therefore, it is important to develop a sensitive, fast and real-time material for liquid food detection. CMC, as lignocellulose derivatives and starch are widely used in the food industry. In this study, starch films with pH-responsive properties are successfully prepared from full-component starch and corn amylopectin (CA) by adding CMC. The effects of CMC on the mechanical properties, morphology characteristics, physical and chemical structures, stability and pH responsiveness of the starch films are analyzed. The starch/CMC-1.0 g composite films display good electrical conductivity and reduce the resistance of the composite film by two orders of magnitude. The composite films have pH response ability; in the simulation of orange juice spoilage experiment, the CA/CMC composite film has a more sensitive current response and was more suitable for the application to liquid food quality detection. Additionally, the starch/CMC composite films have potential applications for rapid detection and real-time monitoring of the safety of liquid food.
Collapse
Affiliation(s)
- Shijiao Qin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China
| | - Hao Sun
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China
| | - Xiaoli Wan
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China,Lincang Academy of Forestry Sciences, Lincang, China
| | - Yujia Wu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China
| | - Xu Lin
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China
| | - Huan Kan
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China
| | - Defa Hou
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China
| | | | - Xiahong He
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China,*Correspondence: Xiahong He, ; Can Liu,
| | - Can Liu
- National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resources, Southwest Forestry University, Kunming, China,*Correspondence: Xiahong He, ; Can Liu,
| |
Collapse
|
10
|
Zhang H, Tian G, Xiong D, Yang T, Wang S, Sun Y, Jin L, Lan B, Deng L, Yang W, Deng W. Carrier concentration-dependent interface engineering for high-performance zinc oxide piezoelectric device. J Colloid Interface Sci 2023; 629:534-540. [DOI: 10.1016/j.jcis.2022.08.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/06/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022]
|
11
|
Ji C, Yang S, Cheng Y, Liu L, Wang D, Zhu S, E T, Li Y. In situ formed CaSO 4 on waste dander biochar to inhibit the mineralization of soil organic carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158776. [PMID: 36116653 DOI: 10.1016/j.scitotenv.2022.158776] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
In order to reduce CO2 emissions, as well as realize the resource utilization of waste dander (WD) and the goal of international "peak carbon dioxide emissions" and "carbon neutrality", Biochar was prepared with WD via pyrolysis technology, achieving CaSO4 in situ generated on its surface, which could be used to inhibit soil organic carbon (SOC) from mineralizing and enhance soil carbon sequestration ability. The characterization results showed that the unstable carbon (C) structures as well as more conjugated structures were generated on Ca-BC, obtaining an increased C sequestration of Ca-BC to 21.70 %. With the application of Ca-BC, the mineralization rate of SOC was reduced to 0.451 mg CO2/(g·d), and the soil moisture content, pH and TOC content were increased to 45.48 %, 7.96 and 47.19 %. In addition, the bioinformatics analysis and redundancy analysis revealed that the application of Ca-BC promoted bacteria to convert into the stable C-dominant phyla (Firmicutes).
Collapse
Affiliation(s)
- Cheng Ji
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, Bohai University, Jinzhou 121013, Liaoning, China
| | - Shuyi Yang
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, Bohai University, Jinzhou 121013, Liaoning, China
| | - Ying Cheng
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, Bohai University, Jinzhou 121013, Liaoning, China
| | - Lin Liu
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, Bohai University, Jinzhou 121013, Liaoning, China
| | - Daohan Wang
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, Bohai University, Jinzhou 121013, Liaoning, China
| | - Shujing Zhu
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, Bohai University, Jinzhou 121013, Liaoning, China
| | - Tao E
- Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, Bohai University, Jinzhou 121013, Liaoning, China.
| | - Yun Li
- Chemistry & Chemical Engineering College of Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
12
|
Zhang H, Tian G, Xiong D, Yang T, Zhong S, Jin L, Lan B, Deng L, Wang S, Sun Y, Yang W, Deng W. Understanding the Enhancement Mechanism of ZnO Nanorod-based Piezoelectric Devices through Surface Engineering. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29061-29069. [PMID: 35726823 DOI: 10.1021/acsami.2c02371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
ZnO is a typical piezoelectric semiconductor, and enhancing the piezoelectric output of ZnO-based devices is essential for their efficient applications. Surface engineering is an effective strategy to improve the piezoelectric output of ZnO-based devices, but its unclear regulation mechanism leads to a lack of reasonable guidance for device design. In this work, the regulation effect of the barrier layer in ZnO-based piezoelectric devices is systematically investigated from the carrier perspective through surface engineering, resulting in a significant improvement (nearly 10-fold) in the output performance of piezoelectric devices. The regulation mechanism of the ZnO-Cu2O p-n heterojunction devices on piezoelectric output is revealed in terms of built-in electric field, depletion layer width, and junction capacitance. These findings facilitate further insight into the enhancement mechanism of the piezoelectric output of ZnO-based devices and provide reasonable ideas for efficient device design.
Collapse
Affiliation(s)
- Hongrui Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Guo Tian
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Da Xiong
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shen Zhong
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Long Jin
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Boling Lan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lin Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shenglong Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yue Sun
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Weili Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
13
|
Cai D, Tao E, Yang S, Ma Z, Li Y, Liu L, Wang D, Qian J. Effect of mixed-phase TiO2 doped with Ca2+ on charge transfer at the TiO2/graphene interface. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|