1
|
Lin X, Ma X, He Y, Li S, Chen W, Li L. One-pot Construction of Metal Nanoparticles Loaded COF Catalysts for Aqueous Hydrogenation Reactions. Chemistry 2024; 30:e202303505. [PMID: 38143237 DOI: 10.1002/chem.202303505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The catalysis performance of metal nanoparticles (NPs) will be significantly deteriorated because of their spontaneous agglomeration during practical applications. Covalent-organic frameworks (COFs) materials with functional groups and well-defined channels benefit for the dispersion and anchor of metal ions and the confined growth of metal NPs, working as an ideal platform to compose catalytic systems. In this article, we report a one-pot strategy for the preparation of metal NPs loaded COFs without the need of post-modification. During the polymerization process, the pre-added metal ions were stabilized by the rapidly formed COF oligomers and hardly disturb the construction of COFs. After reduction, metal NPs are uniformly anchored on the COF matrix. Eventually, a wide spectrum of metal NPs, including Au, Pd, Pt, AuPd, CuPd, CuPt and CuPdPt, loaded COFs are successfully prepared. The versatility and metal ions anchoring mechanism are verified with four different COF matrixes. Taking AuPd NPs as example, the resultant AuPd NPs loaded COF materials can selectively decompose ammonium formate and produce hydrogen in-situ, exhibiting over 99 % conversion of hydrodechlorination for chlorobenzenes and nitro-reduction reaction for nitroaromatic compounds under ambient temperature in aqueous solution.
Collapse
Affiliation(s)
- Xiaogeng Lin
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xingyu Ma
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Yasan He
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Shijun Li
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Wangzhi Chen
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Lei Li
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
2
|
Sun X, Ding Y, Feng G, Yao Q, Zhu J, Xia J, Lu ZH. Carbon bowl-confined subnanometric palladium-gold clusters for formic acid dehydrogenation and hexavalent chromium reduction. J Colloid Interface Sci 2023; 645:676-684. [PMID: 37167916 DOI: 10.1016/j.jcis.2023.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Formic acid (FA), a high-value product of CO2 hydrogenation and biomass conversion, is considered a promising liquid organic hydrogen carrier for its high hydrogen content, easy accessibility, and relative stability. The development of an efficient heterogeneous catalyst toward FA dehydrogenation and Cr(VI) reduction by FA is needed to boost its sluggish kinetics but still remains a challenge. Herein, uniformly dispersed subnanometric PdAu alloy clusters (i.e., 0.9 nm) were successfully prepared and confined by amine-functionalized carbon bowls (ACB). By virtue of the tiny size and abundant active sites of PdAu clusters, the promotional effect of surface amine groups, and electronic interaction between subnanometric PdAu clusters and support, this as-prepared PdAu/ACB catalyst exhibits superior catalytic property for additive-free FA dehydrogenation (turnover frequency, 10597 h-1 at 323 K) and Cr(VI) reduction (rate constant, 0.47 min-1 at 298 K) under mild conditions, higher than most of the catalysts reported so far. This study offers insight into the design of efficient and durable catalysts for various catalytic applications in energy and environment.
Collapse
Affiliation(s)
- Xiongfei Sun
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yiyue Ding
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Gang Feng
- Key Laboratory for Environment and Energy Catalysis of Jiangxi Province, College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qilu Yao
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jia Zhu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jianhui Xia
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Zhang-Hui Lu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
3
|
Liu H, Zou H, Wang D, Wang C, Li F, Dai H, Song T, Wang M, Ji Y, Duan L. Second Sphere Effects Promote Formic Acid Dehydrogenation by a Single-Atom Gold Catalyst Supported on Amino-Substituted Graphdiyne. Angew Chem Int Ed Engl 2023; 62:e202216739. [PMID: 36651658 DOI: 10.1002/anie.202216739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Regulating the second sphere of homogeneous molecular catalysts is a common and effective method to boost their catalytic activities, while the second sphere effects have rarely been investigated for heterogeneous single-atom catalysts primarily due to the synthetic challenge for installing functional groups in their second spheres. Benefiting from the well-defined and readily tailorable structure of graphdiyne (GDY), an Au single-atom catalyst on amino-substituted GDY is constructed, where the amino group is located in the second sphere of the Au center. The Au atoms on amino-decorated GDY displayed superior activity for formic acid dehydrogenation compared with those on unfunctionalized GDY. The experimental studies, particularly the proton inventory studies, and theoretical calculations revealed that the amino groups adjacent to an Au atom could serve as proton relays and thus facilitate the protonation of an intermediate Au-H to generate H2 . Our study paves the way to precisely constructing the functional second sphere on single-atom catalysts.
Collapse
Affiliation(s)
- Hong Liu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haiyuan Zou
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dan Wang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuancheng Wang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fan Li
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hao Dai
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tao Song
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Lele Duan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Sun X, Zhang G, Yao Q, Li H, Feng G, Lu ZH. Amine-Functionalized Carbon Bowl-Supported Pd-La(OH) 3 for Formic Acid Dehydrogenation. Inorg Chem 2022; 61:18102-18111. [DOI: 10.1021/acs.inorgchem.2c02672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiongfei Sun
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Guiyuan Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Qilu Yao
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Hongbo Li
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Gang Feng
- Key Laboratory for Environment and Energy Catalysis of Jiangxi Province, College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zhang-Hui Lu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
5
|
Liu H, Zou H, Wang M, Dong H, Wang D, Li F, Dai H, Song T, Wei S, Ji Y, Wang C, Duan L. Single-Site Heterogeneous Organometallic Ir Catalysts Embedded on Graphdiyne: Structural Manipulation Beyond the Carbon Support. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203442. [PMID: 36156407 DOI: 10.1002/smll.202203442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Accurate control over the coordination circumstances of single-atom catalysts (SACs) is decisive to their intrinsic activity. Here, two single-site heterogeneous organometallic catalysts (SHOCs), Cp*Ir-L/GDY (L = OH- and Cl- ; Cp* = pentamethylcyclopentadienyl), with the fine-tuned local coordination and electronic structure of Ir sites, are constructed by anchoring Cp*Ir complexes on graphdiyne (GDY) matrix via a one-pot procedure. The spectroscopic studies and theoretical calculations indicate that the Ir atoms in Cp*Ir-Cl/GDY and Cp*Ir-OH/GDY have a much higher oxidation state than Ir in the SAC Ir/GDY. As a proof-of-principle demonstration, the GDY-supported SHOCs are used for formic acid dehydrogenation, which display a fivefold enhancement of catalytic activity compared with SAC Ir/GDY. The kinetic isotope effect and in situ Fourier-transform infrared studies reveal that the rate-limiting step is the β-hydride elimination process, and Cp* on the Ir site accelerates the β-hydride elimination reaction. The GDY-supported SHOCs integrate the merits of both SACs and molecular catalysts, wherein the isolated Ir anchored on GDY echoes with SACs' behavior, and the Cp* ligand enables precise structural and electronic regulation like molecular catalysts. The scheme of SHOCs adds a degree of freedom in accurate regulation of the local structure, the electronic property, and therefore the catalytic performance of single-atom catalysts.
Collapse
Affiliation(s)
- Hong Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Haiyuan Zou
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Hongliang Dong
- Center for High-Pressure Science and Technology Advanced Research, Pudong, Shanghai, 201203, P. R. China
| | - Dan Wang
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Fan Li
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hao Dai
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Tao Song
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Shuting Wei
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, P. R. China
| | - Chenguang Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510075, P. R. China
| | - Lele Duan
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
6
|
Huang X, He ZL, Chen Y, Xu Q, Zhu M, Zhai C. Self-standing three-dimensional PdAu nanoflowers for plasma-enhanced photo-electrocatalytic methanol oxidation with a CO-free dominant mechanism. J Colloid Interface Sci 2022; 625:850-858. [DOI: 10.1016/j.jcis.2022.06.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/19/2023]
|
7
|
Amine-Functionalized Natural Halloysite Nanotubes Supported Metallic (Pd, Au, Ag) Nanoparticles and Their Catalytic Performance for Dehydrogenation of Formic Acid. NANOMATERIALS 2022; 12:nano12142414. [PMID: 35889634 PMCID: PMC9318759 DOI: 10.3390/nano12142414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
In today’s age of resource scarcity, the low-cost development and utilization of renewable energy, e.g., hydrogen energy, have attracted much attention in the world. In this work, cheap natural halloysite nanotubes (HNTs) were modified with γ-aminopropyltriethoxysilane (APTES), and the functionalized HNTs were used as to support metal (Pd, Au, Ag) catalysts for dehydrogenation of formic acid (DFA). The supports and fabricated catalysts were characterized with ICP, FT-IR, XRD, XPS and TEM. The functional groups facilitate the anchoring of metal particles to the supports, which brings about the high dispersion of metallic particles in catalysts. The catalysts show high activity against DFA and exhibit selectivity of 100% toward H2 at room temperature or less. The interactions between active centers and supports were investigated by evaluation and comparison of the catalytic performances of Pd/NH2-HNTs, PdAg/NH2-HNTs and PdAu/NH2-HNTs for DFA.
Collapse
|
8
|
Chen Y, Feng C, Wang W, Liu Z, Li J, Liu C, Pan Y, Liu Y. Electronic structure engineering of bimetallic Pd-Au alloy nanocatalysts for improving electrocatalytic hydrodechlorination performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Wang Z, Cheng M, Zhang X, Guo Z, Zhou Z, Zhang M. Synthesis of Metal Silicides Using Polyhedral Oligomeric Silsesquioxane as Silicon Source for Semi-Hydrogenation of phenylacetylene. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01586a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal silicides as a new typical of intermetallic compound has great potential in catalytic reaction. Here, an efficient route for synthesizing metal silicides (such as Pd2Si, RuxSi, PtxSi and Ni2Si)...
Collapse
|