1
|
Horani F, Gamelin DR. Cs 2AgSbI 6 Nanocrystals: a New Air-Stable Iodide Double-Perovskite (Elpasolite) Semiconductor. J Am Chem Soc 2025; 147:16552-16559. [PMID: 40311139 DOI: 10.1021/jacs.5c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Three-dimensional (3D) iodide double perovskites (elpasolites) are extremely rare due to inherent instability issues. Here, we report the discovery of an air-stable iodide elpasolite semiconductor in the form of nanocrystals with the composition Cs2AgSbI6, synthesized via halide exchange from Cs2AgSbBr6 nanocrystals. This composition, previously considered thermodynamically unstable based on computational predictions, shows a ∼1.8 eV optical gap with near-infrared photoluminescence. The nanocrystals are stable in air up to at least 140 °C. As one of only a few known examples of intermediate-bandgap 3D iodide double perovskites, Cs2AgSbI6 represents a promising platform for further development of this family of materials as well as for fundamental and optoelectronic investigations.
Collapse
Affiliation(s)
- Faris Horani
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
2
|
Guo SN, Dong YJ, Qiao M, Wang D, Wang JX. Variable Valence Ce-Based Cs 2CeAgBr 6 Perovskite Nanocrystals for Highly Selective Photoconversion of CO 2 to CH 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408765. [PMID: 39696856 DOI: 10.1002/smll.202408765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Lead halide perovskites demonstrate outstanding luminescent characteristics. However, the inclusion of lead components restricts their extensive utilization. Halide perovskite materials, formulated as A2M(III)M(I)X6 or A2M(IV)X6, possess the potential to serve as stable and eco-friendly substitutes for optoelectronic applications. Nevertheless, their wide bandgap (>3 eV) hinders the practical implementation across various domains. Here, the variable valence Ce-based Cs₂CeAgBr₆ perovskite nanocrystals (NCs) are first synthesized with a bandgap of 2.65 eV. Intriguingly, the coexistence of trivalent and tetravalent Ce can cause localized spin of the f-layer electrons of Ce, leading to Ce3+/4+ (the Ce valence state ranges between III and IV) defects. By manipulating trivalent and tetravalent Ce source proportions, a dual Ce-based perovskite achieves a minimal Ce3+/4+ defect content of 1.4%. The as-prepared Cs₂CeAgBr₆ NCs exhibit exceptional efficiency in CO2 reduction driven by sunlight, with a CH4 selectivity greater than 70% and a super high charge transfer rate of 802.5 µmol·g-1 h-1, far surpassing previously reported findings. Additionally, theoretical calculations have elucidated the photocatalytic mechanism involved in CO₂ reduction. The outcomes of this investigation are expected to stimulate design and fabrication of novel lead-free perovskite nanocrystals.
Collapse
Affiliation(s)
- Sai-Nan Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yan-Jun Dong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meng Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Jiang K, Yang W, Zhang Z, Zhang Y, Lan J, Chen D, Li W, Fan J. Structurally and Electronically Anisotropic Nature of Bridgman-Grown Cs 3Sb 2Br 9 Perovskite Single Crystal toward Efficient Photodetector. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3631-3643. [PMID: 39815470 DOI: 10.1021/acsami.4c18560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Cs3Sb2Br9, as a sort of novel lead-free perovskite single crystal, has the merits of high carrier mobility and a long diffusion length. However, the large-sized and high-crystallized Cs3Sb2Br9 single crystals are not easily obtained. Herein, we apply the vertical Bridgman method to grow centimeter-sized Cs3Sb2Br9 single crystal. The temperature-dependent crystal structure of Cs3Sb2Br9 is in situ characterized in the temperature range of 100-400 K. A novel crystallographic and electronic structure anisotropy of the as-grown Cs3Sb2Br9 single crystal along the transmission directions of [100] and [001] is experimentally and theoretically proved. Owing to the layered two-dimensional (2D) structure of Cs3Sb2Br9, quantum confinement effects prolong the lifetime of hot carriers, leading to their accumulation within the Sb-Br plane along the [100] direction, thereby resulting in a higher density of electronic states. Accordingly, the [100] device exhibits a carrier mobility higher than that of the [001] device, with the [100] device mobility being 4 orders of magnitude higher than that of the [001] device at 423 K, showing a remarkable anisotropy. The [100] device also shows responsivity ∼10 times higher than that of the [001] device.
Collapse
Affiliation(s)
- Kunlun Jiang
- Institute of New Energy Technology, Jinan University, Guangzhou 510632, China
| | - Wenjian Yang
- Institute of New Energy Technology, Jinan University, Guangzhou 510632, China
| | - Zhaobing Zhang
- Institute of New Energy Technology, Jinan University, Guangzhou 510632, China
| | - Yongli Zhang
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Lan
- Institute of New Energy Technology, Jinan University, Guangzhou 510632, China
| | - Dehao Chen
- Institute of New Energy Technology, Jinan University, Guangzhou 510632, China
| | - Wenzhe Li
- Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Jinan University, Guangzhou 511443, China
| | - Jiandong Fan
- Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Jinan University, Guangzhou 511443, China
| |
Collapse
|
4
|
Mondal A, Ubaid M, Gupta S, Pal K, Bhattacharyya S. Visible-Light Photodetection by Zero-Dimensional Hybrid Indium-Halide with Minimal Structural Distortion and Reduced Band Gap. Angew Chem Int Ed Engl 2025; 64:e202412779. [PMID: 39162626 DOI: 10.1002/anie.202412779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024]
Abstract
Perovskite-inspired zero-dimensional (0D) hybrid halides exhibit impressive light emission properties; however, their potential in photovoltaics is hindered by the absence of interconnection between the inorganic polyhedra, leading to acute radiative recombination and insufficient charge separation. We demonstrate that incorporating closely-spaced dissimilar polyhedral units with minimal structural distortion leads to a remarkable enhancement in visible-light photodetection capability. We designed 0D C24H72N8In2Br14 (HIB) with a tetragonal crystal system, replacing the Cs+ of Cs2InBr5.H2O (CIB) with 1,6-hexanediammonium (HDA) cation. HIB comprises [InBr6]3- octahedra, and [InBr4]- tetrahedra units spaced 3.9 Å apart by the HDA linker. The [InBr4]- unit is additionally linked to HDA via intercalated bromine through hydrogen and halogen bonding interactions, respectively. This structural arrangement lowers the dielectric confinement, thereby enhancing carrier density and mobility, and increasing the diffusion coefficient compared to CIB. With 3.6 % bromine vacancy within the [InBr4]- block, mid-gap states are created, reducing the direct band gap to 2.19 eV. HIB demonstrates an unprecedently high responsivity of 9975.9±201.6 mA W-1 under 3 V potential bias at 485 nm wavelength, among low-dimensional hybrid halides. In the absence of potential bias, the self-powered photodetection parameters are 81.2±3.0 mA W-1 and (6.98±0.21)×109 Jones.
Collapse
Affiliation(s)
- Anamika Mondal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Mohammad Ubaid
- Department of Physics, Indian Institute of Technology, Kanpur (IIT Kanpur), Uttar Pradesh, India
| | - Shresth Gupta
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Koushik Pal
- Department of Physics, Indian Institute of Technology, Kanpur (IIT Kanpur), Uttar Pradesh, India
| | - Sayan Bhattacharyya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
5
|
Hu Z, Wang Z, Gao P. Advancements in Scaling Up Perovskite Solar Cells: From Small-Area Devices to Large-Scale Modules. Chemphyschem 2024; 25:e202400587. [PMID: 39023131 DOI: 10.1002/cphc.202400587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has exceeded those of conventional thin-film solar cell technologies, and the speed at which this increase has been achieved is unprecedented in the history of photovoltaics. Despite the significant progress achieved by PSCs at the laboratory level, their commercial prospects still face two significant challenges: scaling up in size and ensuring long-term stability. Small-area devices (~1 cm2) are typically fabricated using spin-coating. However, this approach may not be suitable for preparing the large-area (>100 cm2) substrates required for commercialization. Thus, new materials and methods must be developed to facilitate the coating of large-area PSCs. This review will discuss the development of scaling up organic-inorganic hybrid PSCs and the challenges of increasing the device area. Furthermore, it will provide an overview of the methodologies for achieving high-efficiency perovskite solar modules.
Collapse
Affiliation(s)
- Zhenyu Hu
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Zijie Wang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. China
| | - Peng Gao
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. China
- Xiamen Institute of Rare Earth Materials, Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| |
Collapse
|
6
|
An Y, Wang L, Jiang W, Yuan G, Qiu Z, Lv X, Sun Y, Hang X, Pang H. Composites of (NH 2)-MIL-53(Al) and CBB as bifunctional electrocatalysts for overall electrochemical water splitting in all pH solutions. J Colloid Interface Sci 2024; 657:811-818. [PMID: 38081115 DOI: 10.1016/j.jcis.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
Electrochemical water splitting is one of the most active areas of energy research, yet the benchmark electrocatalysts used for this area are based on expensive noble metals and transition metals, thus mainly reactions in alkaline solution. MOFs and halide perovskite are novel electrochemical catalysts but unstable in water basically. Here we report a study on composites of (NH2)-MIL-53(Al) MOFs and CBB halide perovskite (Cs3Bi2Br9), which exhibit obvious activity for overall electrochemical water splitting for long-term stability with little deactivation after 10 h in all pH solutions.
Collapse
Affiliation(s)
- Yang An
- School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Lingling Wang
- School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Weiyi Jiang
- Institute of Technology for Carbon Neutrality, College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Guoqiang Yuan
- School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Ziming Qiu
- School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xinling Lv
- School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xinxin Hang
- School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
7
|
Wongthep S, Pluengphon P, Tantraviwat D, Panchan W, Boochakiat S, Jarusuphakornkul K, Wu Q, Chen J, Inceesungvorn B. New visible-light-driven Bi 2MoO 6/Cs 3Sb 2Br 9 heterostructure for selective photocatalytic oxidation of toluene to benzaldehyde. J Colloid Interface Sci 2024; 655:32-42. [PMID: 37924589 DOI: 10.1016/j.jcis.2023.10.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Herein, new Bi2MoO6/Cs3Sb2Br9 heterostructure (BiMo/CSB) was investigated for the first time as a visible-light-driven photocatalyst for C(sp3)-H bond activation using molecular oxygen as a green oxidant and toluene as a model substrate. The optimized BiMo/CSB photocatalyst exhibited enhanced toluene oxidation activity (2,346 μmol g-1h-1), which was almost two- and five-fold that of pristine CSB (1,165 μmol g-1h-1) and BiMo (482 μmol g-1h-1), respectively. The improved photocatalytic performance was essentially attributed to the formation of staggered band energy lineup in the BiMo/CSB hybrid, which promoted S-scheme charge transfer across the BiMo/CSB heterointerface as supported by ultraviolet photoelectron spectroscopy (UPS), density functional theoretical (DFT), time-resolve photoluminescence (TRPL), and photoelectrochemical studies. Spin-trapping electron paramagnetic resonance (EPR) and radical scavenging studies revealed that photoinduced hole, molecular oxygen, and superoxide radical are key active species in this photocatalytic system. The developed BiMo/CSB catalyst provided good selectivity toward benzaldehyde product (94-98 %), presumably due to the inhibiting effect of benzyl alcohol on benzaldehyde oxidation. No significant change in structure and morphology was observed for the spent catalyst, however small negative shift of Sb 3d and Bi 4f binding energy was found suggesting partial reduction of Sb3+ and Bi3+. This work not only provides a new visible-light-driven photocatalyst for C(sp3)-H bond activation but also opens the doors for exploitation of the conversion and functionalization of this inert bond toward the production of high value-added organic chemicals.
Collapse
Affiliation(s)
- Sujitra Wongthep
- Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Prayoonsak Pluengphon
- Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn 10540, Thailand
| | - Doldet Tantraviwat
- Department of Electrical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Waraporn Panchan
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sadanan Boochakiat
- Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Kasornkamol Jarusuphakornkul
- Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Qilong Wu
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Jun Chen
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Burapat Inceesungvorn
- Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
8
|
Cao F, Hu Z, Yan T, Hong E, Deng X, Wu L, Fang X. A Dual-Functional Perovskite-Based Photodetector and Memristor for Visual Memory. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304550. [PMID: 37467009 DOI: 10.1002/adma.202304550] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
The imitation of human visual memory demands the multifunctional integration of light sensors similar to the eyes, and image memory, similar to the brain. Although humans have already implemented electronic devices with visual memory functions, these devices require a combination of various components and logical circuits. However, the combination of visual perception and high-performance information storage capabilities into a single device to achieve visual memory remains challenging. In this study, inspired by the function of human visual memory, a dual-functional perovskite-based photodetector (PD) and memristor are designed to realize visual perception and memory capacities. As a PD, it realizes an ultrahigh self-powered responsivity of 276 mA W-1 , a high detectivity of 4.7 × 1011 Jones (530 nm; light intensities, 2.34 mW cm-2 ), and a high rectification ratio of ≈100 (±2 V). As a memristor, an ultrahigh on/off ratio (≈105 ), an ultralow power consumption of 3 × 10-11 W, a low setting voltage (0.15 V), and a long retention time (>7000 s) are realized. Moreover, the dual-functional device has the capacity to perceive and remember light paths and store data with good cyclic stability. This device exhibits perceptual and cyclic erasable memory functions, which provides new opportunities for mimicking human visual memory in future multifunctional applications.
Collapse
Affiliation(s)
- Fa Cao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Zijun Hu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Tingting Yan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Enliu Hong
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaolei Deng
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Limin Wu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
- College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot, Hohhot, 010021, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
9
|
Meng W, Wang C, Li Y, Hu G, Sui S, Xu G, Peng M, Deng Z. Synthesis of Efficient and Stable Tetrabutylammonium Copper Halides with Dual Emissions for Warm White Light-Emitting Diodes. Chemistry 2023; 29:e202202675. [PMID: 36599805 DOI: 10.1002/chem.202202675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
In order to achieve a high color-rendering index (CRI) and low correlated color temperature (CCT) indoor lighting, single-component phosphors with broad-band dual emission are in high demand for white-light-emitting diodes (WLEDs). However, phosphors with such fluorescent properties are rare at present. Herein, we report a facile solid-state chemical method for the synthesis of single-component phosphor with broad-band emission and a large Stokes shift that can meet the requirements of future white-light sources. These new tetrabutylammonium copper halides phosphors have excellent warm white emission characteristics, and their luminescence peaks are located at 494 and 654 nm. The optimized photoluminescence (PL) quantum yield can reach 93.7 %. The typical CIE coordinate of the as-fabricated WLED is at (0.3620, 0.3731) with a CRI of 89 and low CCT of 4516 K.
Collapse
Affiliation(s)
- Wen Meng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Chuying Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yacong Li
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Guangcai Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Shiqi Sui
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Guangyong Xu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Min Peng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Zhengtao Deng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
10
|
Yang Z, Meng W, Kang J, Wang X, Shu X, Chen T, Xu R, Xu F, Hong F. Unraveling the Defect-Dominated Broadband Emission Mechanisms in (001)-Preferred Two-Dimensional Layered Antimony-Halide Perovskite Film. J Phys Chem Lett 2022; 13:11736-11744. [PMID: 36515687 DOI: 10.1021/acs.jpclett.2c03151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
By adding molar-controlled SbCl3 in a Cs3Sb2Cl9 precursor, we employed a low-temperature solution-processed approach to prepare high-quality (001)-preferred Cs3Sb2Cl9 thin film, which demonstrates a stable defect-dominated broadband emission at room temperature. Density functional theory calculations reveal that the defect emission originates from the donor-acceptor pair (DAP) recombination between chlorine vacancy (VCl) and cesium vacancy (VCs). Furthermore, VCl + VCs DAP is more stable on the (001) surface. The improved film quality and the more stable VCl + VCs DAP increase the activation energy related to defect states, resulting in an enhancement of the defect emission for the high-quality (001)-preferred film. This work provides deep insight into the key role of the (001) surface in defect emission and a feasible strategy to enhance the defect emission in 2D halide perovskites A3B2X9 (A = CH3NH3, Cs, Rb; B = Bi, Sb; X = Cl, Br, I) by control of the thin film preferred orientation.
Collapse
Affiliation(s)
- Zichen Yang
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
| | - Weiwei Meng
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan430072, China
| | - Jiaxing Kang
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
| | - Xiang Wang
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
| | - Xin Shu
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
| | - Teng Chen
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai200444, China
| | - Run Xu
- Department of Electronic Information Materials, School of Materials Science and Engineering, Shanghai University, Shanghai200444, China
- Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan314113, China
| | - Fei Xu
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
- Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan314113, China
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai200433, China
| | - Feng Hong
- SHU-Solar E R&D Lab, Department of Physics, College of Sciences, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai Frontiers Science Center of Quantum and Superconducting Matter States, Shanghai University, Shanghai200444, China
- Zhejiang Institute of Advanced Materials, Shanghai University, Jiashan314113, China
| |
Collapse
|