1
|
Fang L, Zhang Y, Zhang L, Jiang Y. A facile strategy to prepare fibrous and water resistant moist-electric generator with adjustable response speed. Int J Biol Macromol 2025; 306:141643. [PMID: 40032088 DOI: 10.1016/j.ijbiomac.2025.141643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/11/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
This work presents a polyvinyl alcohol (PVA) and cellulose nanofiber (CNF) based fiber structure moist-electric generator (FMEG), which demonstrates enhanced suitability for smart wearable electronics compared to traditional MEGs. The resulting PVA FMEG generated a relatively high output voltage of 0.50 V and a current of 4 μA per 2 cm fiber. The improved performance stems from the efficient directional ion movement enabled by the fiber structure (from outer to inner layers). Water resistance and response speed of FMEG were further improved by crosslinking PVA with boric acid (BA) and the introduction of CNF. After five washing cycles, the crosslinked FMEG retained 86 % of its initial weight. Additionally, the response time (time to reach 0.40 V) of the CNF-enhanced FMEG was reduced to 140 s, significantly shorter than that of pure PVA FMEG (600 s) and BA-crosslinked FMEG (1300 s). By tuning the crosslinking degree and CNF content, the response speed could be precisely regulated for applications such as breath sensing or powering a red LED bulb. This study demonstrates a promising FMEG with high output, water resistance, and tunable sensitivity, offering superior applicability for smart wearable devices compared to conventional MEGs.
Collapse
Affiliation(s)
- Liu Fang
- College of Textile and Clothing, Qingdao University, Ningxia Road 308, Qingdao, Shandong 266071, China
| | - Yuying Zhang
- College of Textile and Clothing, Qingdao University, Ningxia Road 308, Qingdao, Shandong 266071, China
| | - Liming Zhang
- College of Textile and Clothing, Qingdao University, Ningxia Road 308, Qingdao, Shandong 266071, China; Shandong Jiejing Group Corporation, Shenzhen Road 98, Rizhao, Shandong 276826, China.
| | - Yijun Jiang
- College of Textile and Clothing, Qingdao University, Ningxia Road 308, Qingdao, Shandong 266071, China.
| |
Collapse
|
2
|
Tang D, Qu R, Xiang H, He E, Hu H, Ma Z, Liu G, Wei Y, Ji J. Highly Stretchable Composite Conductive Fibers (SCCFs) and Their Applications. Polymers (Basel) 2024; 16:2710. [PMID: 39408423 PMCID: PMC11478555 DOI: 10.3390/polym16192710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Stretchable composite conductive fibers (SCCFs) exhibit remarkable conductivity, stretchability, breathability, and biocompatibility, making them ideal candidates for wearable electronics and bioelectronics. The exploitation of SCCFs in electronic devices requires a careful balance of many aspects, including material selection and process methodologies, to address the complex challenges associated with their electrical and mechanical properties. In this review, we elucidate the conductive mechanism of SCCFs and summarize strategies for integrating various conductors with stretchable fibers, emphasizing the primary challenges in fabricating highly conductive fibers. Furthermore, we explore the multifaceted applications of SCCFs-based frameworks in wearable electronic devices. This review aims to emphasize the significance of SCCFs and offers insights into their conductive mechanisms, material selection, manufacturing technologies, and performance improvement. Hopefully, it can guide the innovative development of SCCFs and broaden their application potential.
Collapse
Affiliation(s)
- Diane Tang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - Ruixiang Qu
- Zhejiang Lab, Hangzhou 310000, China; (R.Q.); (Z.M.)
| | - Huacui Xiang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
| | - Enjian He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
| | - Hanshi Hu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
| | - Zhijun Ma
- Zhejiang Lab, Hangzhou 310000, China; (R.Q.); (Z.M.)
| | - Guojun Liu
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Taoyuan 32023, Taiwan
| | - Jiujiang Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (D.T.); (H.X.); (E.H.); (H.H.)
| |
Collapse
|
3
|
Ding Y, Jiang J, Wu Y, Zhang Y, Zhou J, Zhang Y, Huang Q, Zheng Z. Porous Conductive Textiles for Wearable Electronics. Chem Rev 2024; 124:1535-1648. [PMID: 38373392 DOI: 10.1021/acs.chemrev.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.
Collapse
Affiliation(s)
- Yichun Ding
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350108, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Jinxing Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yingsi Wu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yaokang Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Junhua Zhou
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Yufei Zhang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, P. R. China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
4
|
Zhang W, Yang J, Knopf GK. Numerical Simulation of Solvent Evaporation in a Reactive Silver Ink Droplet Deposited on a Heated Substrate. ACS OMEGA 2023; 8:38991-39003. [PMID: 37901545 PMCID: PMC10601441 DOI: 10.1021/acsomega.3c03539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
Understanding the movement of silver ions (Ag+) in the solvent of a thermally evaporated particle-free reactive silver ink droplet is essential for optimizing the electronic inkjet printing process. In this work, a numerical study based on the Navier-Stokes equations is used to examine the microflows inside the evaporating solvent of a reactive silver ink droplet and to predict the morphology of the resultant Ag particle aggregations that form during the heat-activated processes. The droplet evaporation of the water-ethylene glycol ink solvent (H2O-(CH2OH)2) is simulated using COMSOL Multiphysics software. The model assumes that the evaporating fluid is heterogeneous due to the mass transfer of ethylene glycol molecules throughout the droplet by capillary flow. A layer of concentrated ethylene glycol forms at the fluid-substrate interface during solvent evaporation if the substrate is heated. The concentrated ethylene glycol molecules are then transported inward by the capillary action, and the resultant Ag particles, arising from the thermally driven reactions, accumulate at the bottom center of the drying droplet. The numerical simulations demonstrate that the droplet evaporation process depends on the water concentration in the solvent, substrate temperature, surface tension, and natural convection. Furthermore, the capillary flow dominates the fluid flow inside the evaporating droplet, causing some Ag particles to accumulate at the contact line, the commonly observed "coffee-ring effect". The results provide new insights into the chemical reactions that produce experimentally observed silver particle aggregations during the reactive silver ink droplet evaporation process and help establish realistic process parameters for improving the quality of inkjet-printed conductive silver films and electronic circuit microtraces.
Collapse
Affiliation(s)
- Weipeng Zhang
- Mechanical
and Materials Engineering, The University
of Western Ontario, N6A 5B9 London, Ontario, Canada
| | - Jun Yang
- Mechanical
and Materials Engineering, The University
of Western Ontario, N6A 5B9 London, Ontario, Canada
- Shenzhen
Institute for Advanced Study, University
of Electronic Science and Technology of China, 518110 Shenzhen, Guangdong, China
| | - George K. Knopf
- Mechanical
and Materials Engineering, The University
of Western Ontario, N6A 5B9 London, Ontario, Canada
| |
Collapse
|
5
|
Simić M, Stavrakis AK, Stojanović GM. Portable Heating and Temperature-Monitoring System with a Textile Heater Embroidered on the Facemask. ACS OMEGA 2022; 7:47214-47224. [PMID: 36570303 PMCID: PMC9773964 DOI: 10.1021/acsomega.2c06431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Personal heating systems are getting increasing interest because of the need to reduce the negative impact of cold weather on the health of people and animals. Heating the air before inhalation is of great importance as it can reduce the probability of various diseases. In this paper, we present a textile-based heater composed of commercial conductive threads, embroidered on an ordinary protective facemask. We also present the design and implementation details of the temperature monitoring and controlling circuit. Air temperature inside the facemask was monitored by a thermocouple placed in close proximity to the nose (nostrils). Preliminary testing revealed that the difference among temperatures in repeated heating cycles is in the range of ±1.5 °C. The response time for temperature increase from 29.9 to 40.5 °C was about 4 min, while the recovery time from 40.5 to 31.3 °C was about 4.3 min. Safety for human use and wireless data transmission to an application installed on a mobile phone are also demonstrated.
Collapse
|
6
|
Gassab M, Brefuel N, Sylvestre A, Dridi C, Basrour S. Structural, thermal and dielectric properties of glycerolized hydrogen‐bonded polyvinyl alcohol films. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marwa Gassab
- NANOMISENE Laboratory, LR16CRMN01 Centre for Research on Microelectronics and Nanotechnology CRMN of Sousse Technopole Sahloul, Sousse Tunisia
- University of Sousse High School of Sciences and Technology of Hammam Sousse Sousse Tunisia
| | - Nicolas Brefuel
- Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab Grenoble France
| | - Alain Sylvestre
- Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab Grenoble France
| | - Chérif Dridi
- NANOMISENE Laboratory, LR16CRMN01 Centre for Research on Microelectronics and Nanotechnology CRMN of Sousse Technopole Sahloul, Sousse Tunisia
| | - Skandar Basrour
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA Grenoble France
| |
Collapse
|
7
|
Yang Y, Duan S, Zhao H. Advances in constructing silver nanowire-based conductive pathways for flexible and stretchable electronics. NANOSCALE 2022; 14:11484-11511. [PMID: 35912705 DOI: 10.1039/d2nr02475f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With their soaring technological demand, flexible and stretchable electronics have attracted many researchers' attention for a variety of applications. The challenge which was identified a decade ago and still remains, however, is that the conventional electrodes based on indium tin oxide (ITO) are not suitable for ultra-flexible electronic devices. The main reason is that ITO is brittle and expensive, limiting device performance and application. Thus, it is crucial to develop new materials and processes to construct flexible and stretchable electrodes with superior quality for next-generation soft devices. Herein, various types of conductive nanomaterials as candidates for flexible and stretchable electrodes are briefly reviewed. Among them, silver nanowire (AgNW) is selected as the focus of this review, on account of its excellent conductivity, superior flexibility, high technological maturity, and significant presence in the research community. To fabricate a reliable AgNW-based conductive network for electrodes, different processing technologies are introduced, and the corresponding characteristics are compared and discussed. Furthermore, this review summarizes strategies and the latest progress in enhancing the conductive pathway. Finally, we showcase some exemplary applications and provide some perspectives about the remaining technical challenges for future research.
Collapse
Affiliation(s)
- Yuanhang Yang
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
| | - Shun Duan
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Zhao
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
| |
Collapse
|
8
|
Polymer/nanocarbon nanocomposites with enhanced properties. Polym J 2022. [DOI: 10.1038/s41428-022-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Park C, Lee B, Kim J, Lee H, Kang J, Yoon J, Ban J, Song C, Cho SJ. Flexible Sensory Systems: Structural Approaches. Polymers (Basel) 2022; 14:1232. [PMID: 35335562 PMCID: PMC8955130 DOI: 10.3390/polym14061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Biology is characterized by smooth, elastic, and nonplanar surfaces; as a consequence, soft electronics that enable interfacing with nonplanar surfaces allow applications that could not be achieved with the rigid and integrated circuits that exist today. Here, we review the latest examples of technologies and methods that can replace elasticity through a structural approach; these approaches can modify mechanical properties, thereby improving performance, while maintaining the existing material integrity. Furthermore, an overview of the recent progress in wave/wrinkle, stretchable interconnect, origami/kirigami, crack, nano/micro, and textile structures is provided. Finally, potential applications and expected developments in soft electronics are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Seong J. Cho
- Department of Mechanical Engineering, Chungnam National University (CNU), 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea; (C.P.); (B.L.); (J.K.); (H.L.); (J.K.); (J.Y.); (J.B.); (C.S.)
| |
Collapse
|