1
|
Chen J, Guo Z, Wang J, Zhang X. Microscopic morphology modulation and microwave absorption properties of nano-ZnO. NANOSCALE 2025; 17:10969-10984. [PMID: 40202450 DOI: 10.1039/d4nr05469e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Electromagnetic waves can cause varying degrees of damage to the human body and equipment, making the development of unique nanostructured materials with excellent reflection loss (RL), minimal thickness, wide frequency band, and light weight highly valued. To enhance the efficiency of microwave absorption, this study employs the hydrothermal method, using copper sheets as substrates, and varying the concentration of precursors, reaction time, and reaction temperature, successfully preparing three different morphologies of nano-ZnO (flake-like, flower-like, and rod-like). The electromagnetic properties and wave absorption performance of the obtained three morphologies were analyzed. The microwave loss effect of ZnO mainly comes from the sample's dielectric polarization, interfacial polarization, and multiple reflections. By comparing the different morphologies of ZnO, rod-like ZnO has better impedance matching and attenuation capabilities. When mixed with paraffin at a mass ratio of 20 wt% and a thickness of d = 3.5 mm, the sample exhibits good wave absorption performance (-11.02 dB) and an effective absorption bandwidth of 2.42 GHz. When rod-like ZnO is mixed with paraffin wax at 50 wt%, the maximum scattering loss is -19.2 dB and the effective absorption bandwidth is 1.5 GHz at a thickness of 4.5 mm and 16.82 GHz. There are significant differences in the absorption of electromagnetic waves by nano-ZnO with different microstructures, making it particularly important to study the absorption characteristics and microwave loss mechanisms of ZnO with specific morphologies.
Collapse
Affiliation(s)
- Jin Chen
- Jin Chen-School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Zhifeng Guo
- Jin Chen-School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Jiani Wang
- Jin Chen-School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Xuan Zhang
- Jin Chen-School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| |
Collapse
|
2
|
Khan T, Arora K, Agarwal R, Muduli PK, Chu YH, Horng RH, Singh R. Unveiling Superior Solar-Blind Photodetection with a NiO/ZnGa 2O 4 Heterojunction Diode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57290-57301. [PMID: 39393345 DOI: 10.1021/acsami.4c10500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
This investigation presents a self-powered, solar-blind photodetector utilizing a low-temperature fabricated crystalline NiO/ZnGa2O4 heterojunction with a staggered type-II band alignment. The device leverages the pyrophototronic effect (PPE), combining the photoelectric effect in the p-n junction and the pyroelectric effect in the non-centrosymmetric ZnGa2O4 crystal. This synergistic effect enhances the photodetector's performance parameters, thereby outperforming traditional solar-blind photodetectors. The device demonstrates an extremely low dark current of 5.39 fA, a high responsivity of 88 mA/W, and a very high specific detectivity of 2.03 × 1014 Jones under 246 nm light irradiation at 0 V bias. Significantly, due to the PPE, the impact demonstrates a much-enhanced transient response when tested under various light intensities, ranging from 18 to 122 μW/cm2. The photodetector shows a high responsivity of 338 A/W and an outstanding detectivity of 7.1 × 1018 Jones with an applied voltage of -13 V, showing its ability to detect weak signals. Single-crystalline ZnGa2O4 fabricated by MOCVD exhibits significant absorption of deep UV light, and the heterojunction's type-II band alignment with NiO is responsible for its exceptional self-powered pyrophotoelectric detecting and rectifying capabilities.
Collapse
Affiliation(s)
- Taslim Khan
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
- International College of Semiconductor Technology (ICST), National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kanika Arora
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rekha Agarwal
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Pranaba Kishor Muduli
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ying-Hao Chu
- International College of Semiconductor Technology (ICST), National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ray Hua Horng
- International College of Semiconductor Technology (ICST), National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Rajendra Singh
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
3
|
Sharifi Malvajerdi S, Aboutorabi S, Shahnazi A, Gholamhosseini S, Taheri Ghahrizjani R, Yahyaee Targhi F, Erfanimanesh S, Beigverdi R, Imani A, Sari AH, Sun H, Saffarian P, Behmadi H, Nabid MR, Hosseini A, Abrari M, Ghanaatshoar M. HVHC-ESD-Induced Oxygen Vacancies: An Insight into the Phenomena of Interfacial Interactions of Nanostructure Oxygen Vacancy Sites with Oxygen Ion-Containing Organic Compounds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48785-48799. [PMID: 37647519 DOI: 10.1021/acsami.3c10017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The challenging environmental chemical and microbial pollution has always caused issues for human life. This article investigates the detailed mechanism of photodegradation and antimicrobial activity of oxide semiconductors and realizes the interface phenomena of nanostructures with toxins and bacteria. We demonstrate how oxygen vacancies in nanostructures affect photodegradation and antimicrobial behavior. Additionally, a novel method with a simple, tunable, and cost-effective synthesis of nanostructures for such applications is introduced to resolve environmental issues. The high-voltage, high-current electrical switching discharge (HVHC-ESD) system is a novel method that allows on-the-spot sub-second synthesis of nanostructures on top and in the water for wastewater decontamination. Experiments are done on rhodamine B as a common dye in wastewater to understand its photocatalytic degradation mechanism. Moreover, the antimicrobial mechanism of oxide semiconductors synthesized by the HVHC-ESD method with oxygen vacancies is realized on methicillin- and vancomycin-resistant Staphylococcus aureus strains. The results yield new insights into how oxygen ions in dyes and bacterial walls interact with the surface of ZnO with high oxygen vacancy, which results in breaking of the chemical structure of dyes and bacterial walls. This interaction leads to degradation of organic dyes and bacterial inactivation.
Collapse
Affiliation(s)
- Shahab Sharifi Malvajerdi
- Laser and Plasma Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shahrzad Aboutorabi
- Department of Biology, Science and Research Branch, Islamic Azad University, 1477893855 Tehran, Iran
| | - Azita Shahnazi
- Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Saeb Gholamhosseini
- Laser and Plasma Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | | | - Fatemeh Yahyaee Targhi
- Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Soroor Erfanimanesh
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 1417613151 Tehran, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 1417613151 Tehran, Iran
| | - Aref Imani
- Laser and Plasma Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
- Institute of Photonics, TU Wien, Gusshausstrasse, 27/3/387/ Vienna, Austria
| | - Amir Hossein Sari
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, 1477893855 Tehran, Iran
| | - Haiding Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, 1477893855 Tehran, Iran
| | - Homa Behmadi
- Department of Food Engineering and Postharvest Technology, Agricultural Engineering, Research Institute, Agricultural Research, Education and Extension Organization (AREEO), 3135933151 Karaj, Iran
| | - Mohammad Reza Nabid
- Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Alireza Hosseini
- Laser and Plasma Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Masoud Abrari
- Laser and Plasma Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Majid Ghanaatshoar
- Laser and Plasma Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| |
Collapse
|
4
|
Abrari M, Ghanaatshoar M, Malvajerdi SS, Gholamhosseini S, Hosseini A, Sun H, Mohseni SM. Investigating various metal contacts for p-type delafossite α-CuGaO 2 to fabricate ultraviolet photodetector. Sci Rep 2023; 13:8259. [PMID: 37217774 DOI: 10.1038/s41598-023-35458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Delafossite semiconductors have attracted substantial attention in the field of electro-optics owing to their unique properties and availability of p-type materials that are applicable for solar cells, photocatalysts, photodetectors (PDs) and p-type transparent conductive oxides (TCOs). The CuGaO2 (CGO), as one of the most promising p-type delafossite materials, has appealing electrical and optical properties. In this work, we are able to synthesize CGO with different phases by adopting solid-state reaction route using sputtering followed by heat treatment at different temperatures. By examining the structural properties of CGO thin films, we found that the pure delafossite phase appears at the annealing temperature of 900 °C. While at lower temperatures, delafossite phase can be observed, but along with spinel phase. Furthermore, their structural and physical characterizations indicate an improvement of material-quality at temperatures higher than 600 °C. Thereafter, we fabricated a CGO-based ultraviolet-PD (UV-PD) with a metal-semiconductor-metal (MSM) configuration which exhibits a remarkable performance compared to the other CGO-based UV-PDs and have also investigated the effect of metal contacts on the device performance. We demonstrate that UV-PD with the employment of Cu as the electrical contact shows a Schottky behavior with a responsivity of 29 mA/W with a short response time of 1.8 and 5.9 s for rise and decay times, respectively. In contrast, the UV-PD with Ag electrode has shown an improved responsivity of about 85 mA/W with a slower rise/decay time of 12.2/12.8 s. Our work sheds light on the development of p-type delafossite semiconductor for possible optoelectronics application of the future.
Collapse
Affiliation(s)
- Masoud Abrari
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Majid Ghanaatshoar
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Shahab Sharifi Malvajerdi
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Saeb Gholamhosseini
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Alireza Hosseini
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Haiding Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | | |
Collapse
|
5
|
Ebrahimi Naghani M, Neghabi M, Zadsar M, Abbastabar Ahangar H. Synthesis and characterization of linear/nonlinear optical properties of graphene oxide and reduced graphene oxide-based zinc oxide nanocomposite. Sci Rep 2023; 13:1496. [PMID: 36707605 PMCID: PMC9883389 DOI: 10.1038/s41598-023-28307-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
In this paper, we aimed to investigate the linear and nonlinear optical properties of GO-ZnO and RGO-ZnO nanocomposites in comparison with pure GO and reduced graphene oxide (RGO). For this purpose, GO, RGO, GO-ZnO, and RGO-ZnO were synthesized and characterized by Fourier transform infrared (FT-IR), Ultraviolet-Visible (UV-Vis) absorption, X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD and EDX analysis indicated the reduction of GO as well as the successful synthesis of GO-ZnO and RGO-ZnO nanocomposites. The FT-IR spectroscopy showed that absorption bands were at 3340 cm-1, 1630 cm-1, 1730 cm-1 and 480 cm-1 related to OH, C=C, C=O, and Zn-O stretching vibrations, respectively. The direct band gaps of GO, RGO, GO-ZnO and RGO-ZnO from UV-Vis spectra were at 3.36, 3.18, 3.63 and 3.25 eV, sequentially. Moreover, the third-order nonlinear optical properties were investigated using a z-scan technique with Nd: YAG laser (532 nm, 70 mW). It can be seen that the nonlinear absorption coefficient value [Formula: see text] increased from 5.3 × 10-4 (GO) to 8.4 × 10-3 cm/W (RGO-ZnO). In addition, nonlinear refractive index (n2) of the GO, RGO, GO-ZnO, and RGO-ZnO was obtained as 10.9 × 10-10, 14.3 × 10-10, 22.9 × 10-10, and 31.9 × 10-10 cm2/W respectively.
Collapse
Affiliation(s)
- Mohsen Ebrahimi Naghani
- grid.468905.60000 0004 1761 4850Department of Physics, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mina Neghabi
- grid.468905.60000 0004 1761 4850Department of Physics, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mehdi Zadsar
- grid.468905.60000 0004 1761 4850Department of Physics, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hossein Abbastabar Ahangar
- grid.468905.60000 0004 1761 4850Department of Chemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|