1
|
Yang L, Liu R, Xie M, Yang F. Construction of a MIL-101-DGA (MOF) Coupling Betaine Hydrochloride System for the Green and Efficient Separation of Zirconium and Hafnium. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24369-24381. [PMID: 40209173 DOI: 10.1021/acsami.5c02082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Metal-organic framework materials (MOFs) have potential for practical applications in solid-phase separation technology. However, no studies of the separation of hafnium and zirconium using MOFs have been performed. This work synthesized MIL-101-DGA solid-phase adsorbent material, which was synthesized using amino-containing MIL-101-NH2 as a matrix material by introducing diglycolic acid (DGA) functional groups through a one-step ring-opening reaction. Betaine hydrochloride was selected as the complexing agent to establish the MIL-101-DGA coupling betaine hydrochloride push-pull system; this system could act as an alternative to the traditional MIBK-HSCN separation system. We are the first to report that this MIL-101-DGA coupling betaine hydrochloride system could obtain separation coefficients (βZr/Hf) of 19.7 at pH 0.50 and 8.2 at pH 1.46. Furthermore, the highest adsorption capacity of MIL-101-DGA for Zr was 63.7 mg/g. These results demonstrated that MIL-101-DGA had excellent separation performance for zirconium and hafnium in the betaine hydrochloride medium. This system also exhibited an outstanding cycling performance and immersion stability. After multiple adsorption/desorption cycles and 1 week of immersion in various solutions, the structure and adsorption capability essentially remained unchanged. The adsorption mechanism was thoroughly examined using a suite of analysis and detection methods, including the slope method, FT-IR, XPS, and DFT. In conclusion, we propose that the MIL-101-DGA coupling betaine hydrochloride system, which is an efficient and green separation system, could replace the traditional MIBK-HSCN separation system; our study provides a concept for the industrialization of zirconium and hafnium separation from key mineral resources.
Collapse
Affiliation(s)
- Luyao Yang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Liu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiying Xie
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Yang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361021, China
- China Rare Earth Group Research-Institute, Shenzhen 518000, China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, China Rare Earth Group Research Institute, Ganzhou 341000, China
- Fujian Province Joint Innovation Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, China
| |
Collapse
|
2
|
Wood AC, Johnson EC, Prasad RRR, Sullivan MV, Turner NW, Armes SP, Staniland SS, Foster JA. Phage Display Against 2D Metal-Organic Nanosheets as a New Route to Highly Selective Biomolecular Recognition Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406339. [PMID: 39535384 DOI: 10.1002/smll.202406339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Peptides are important biomarkers for various diseases, however distinguishing specific amino-acid sequences using artificial receptors remains a major challenge in biomedical sensing. This study introduces a new approach for creating highly selective recognition surfaces using phage display biopanning against metal-organic nanosheets (MONs). Three MONs (ZIF-7, ZIF-7-NH2, and Hf-BTB-NH2) are added to a solution containing every possible combination of seven-residue peptides attached to bacteriophage hosts. The highest affinity peptides for each MON are isolated through successive bio-panning rounds. Comparison of the surface properties of the MONs and high-affinity peptides provide useful insights into the relative importance of electrostatic, hydrophobic, and co-ordination bonding interactions in each system, aiding the design of future MONs. Coating of the Hf-BTB-NH2 MONs onto a quartz crystal microbalance (QCM) produced a five-fold higher signal for phage with the on-target peptide sequence compared to those with generic sequences. Surface plasmon resonance (SPR) studies produce a 4600-fold higher equilibrium dissociation constant (KD) for on-target sequences and are comparable to those of antibodies (KD = 4 x 10-10 m). It is anticipated that insights from the biopanning approach, combined with the highly tunable nature of MONs, will lead to a new generation of highly selective recognition surfaces for use in biomedical sensors.
Collapse
Affiliation(s)
- Amelia C Wood
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Edwin C Johnson
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Ram R R Prasad
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Mark V Sullivan
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Nicholas W Turner
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Steven P Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Sarah S Staniland
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Jonathan A Foster
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| |
Collapse
|
3
|
Prasad RR, Boyadjieva SS, Zhou G, Tan J, Firth FCN, Ling S, Huang Z, Cliffe MJ, Foster JA, Forgan RS. Modulated Self-Assembly of Catalytically Active Metal-Organic Nanosheets Containing Zr 6 Clusters and Dicarboxylate Ligands. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17812-17820. [PMID: 38557002 PMCID: PMC11009912 DOI: 10.1021/acsami.4c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Two-dimensional metal-organic nanosheets (MONs) have emerged as attractive alternatives to their three-dimensional metal-organic framework (MOF) counterparts for heterogeneous catalysis due to their greater external surface areas and higher accessibility of catalytically active sites. Zr MONs are particularly prized because of their chemical stability and high Lewis and Brønsted acidities of the Zr clusters. Herein, we show that careful control over modulated self-assembly and exfoliation conditions allows the isolation of the first example of a two-dimensional nanosheet wherein Zr6 clusters are linked by dicarboxylate ligands. The hxl topology MOF, termed GUF-14 (GUF = Glasgow University Framework), can be exfoliated into monolayer thickness hns topology MONs, and acid-induced removal of capping modulator units yields MONs with enhanced catalytic activity toward the formation of imines and the hydrolysis of an organophosphate nerve agent mimic. The discovery of GUF-14 serves as a valuable example of the undiscovered MOF/MON structural diversity extant in established metal-ligand systems that can be accessed by harnessing the power of modulated self-assembly protocols.
Collapse
Affiliation(s)
- Ram R.
R. Prasad
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K.
| | - Sophia S. Boyadjieva
- WestCHEM
School of Chemistry, University of Glasgow, Joseph Black Building, University
Avenue, Glasgow G12 8QQ, U.K.
| | - Guojun Zhou
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Jiangtian Tan
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K.
| | - Francesca C. N. Firth
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Sanliang Ling
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, University
Park, Nottingham NG7 2RD, U.K.
| | - Zhehao Huang
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden
| | - Matthew J. Cliffe
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jonathan A. Foster
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K.
| | - Ross S. Forgan
- WestCHEM
School of Chemistry, University of Glasgow, Joseph Black Building, University
Avenue, Glasgow G12 8QQ, U.K.
| |
Collapse
|
4
|
Liu Y, Zhao S, Li Y, Huang J, Yang X, Wang J, Tao CA. Mechanically Enhanced Detoxification of Chemical Warfare Agent Simulants by a Two-Dimensional Piezoresponsive Metal-Organic Framework. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:559. [PMID: 38607094 PMCID: PMC11013765 DOI: 10.3390/nano14070559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/13/2024]
Abstract
Chemical warfare agents (CWAs) refer to toxic chemical substances used in warfare. Recently, CWAs have been a critical threat for public safety due to their high toxicity. Metal-organic frameworks have exhibited great potential in protecting against CWAs due to their high crystallinity, stable structure, large specific surface area, high porosity, and adjustable structure. However, the metal clusters of most reported MOFs might be highly consumed when applied in CWA hydrolysis. Herein, we fabricated a two-dimensional piezoresponsive UiO-66-F4 and subjected it to CWA simulant dimethyl-4-nitrophenyl phosphate (DMNP) detoxification under sonic conditions. The results show that sonication can effectively enhance the removal performance under optimal conditions; the reaction rate constant k was upgraded 45% by sonication. Moreover, the first-principle calculation revealed that the band gap could be further widened with the application of mechanical stress, which was beneficial for the generation of 1O2, thus further upgrading the detoxification performance toward DMNP. This work demonstrated that mechanical vibration could be introduced to CWA protection, but promising applications are rarely reported.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianfang Wang
- College of Science, National University of Defense Technology, Changsha 430083, China; (Y.L.); (S.Z.); (Y.L.); (J.H.); (X.Y.)
| | - Cheng-an Tao
- College of Science, National University of Defense Technology, Changsha 430083, China; (Y.L.); (S.Z.); (Y.L.); (J.H.); (X.Y.)
| |
Collapse
|
5
|
Tao CA, Wang B, Zhao H, Yang X, Huang J, Wang J. Starfruit-Shaped Zirconium Metal-Organic Frameworks: From 3D Intermediates to 2D Nanosheet Petals with Enhanced Catalytic Activity. Chemistry 2024; 30:e202302835. [PMID: 38116892 DOI: 10.1002/chem.202302835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
We present the fabrication of a novel Starfruit-shaped metal-organic framework (SMOF) composed of zirconium and Tetra(4-carboxyphenyl)porphine linkers. The SMOF exhibits a unique morphology with edge-sharing two-dimensional (2D) nanosheet petals. Our investigation unravels a captivating transformation process, wherein three-dimensional (3D) shuttle-shaped MOFs form initially and subsequently evolve into 2D nanosheet-based SMOF structures. The distinct morphology of SMOF showcases superior catalytic activity in detoxifying G-type nerve agent and blister agent simulants, surpassing that of its 3D counterparts. This discovery of the 3D-to-2D transition growth pathway unlocks exciting opportunities for exploring novel strategies in advanced MOF nanostructure development, not only for catalysis but also for various other applications.
Collapse
Affiliation(s)
- Cheng-An Tao
- College of Science, National University of Defense Technology, Changsha, 410073, China
| | - Beibei Wang
- College of Science, National University of Defense Technology, Changsha, 410073, China
| | - He Zhao
- College of Science, National University of Defense Technology, Changsha, 410073, China
| | - Xuheng Yang
- College of Science, National University of Defense Technology, Changsha, 410073, China
| | - Jian Huang
- College of Science, National University of Defense Technology, Changsha, 410073, China
| | - Jianfang Wang
- College of Science, National University of Defense Technology, Changsha, 410073, China
| |
Collapse
|
6
|
Dai J, Wang D, Yang J, Tian R, Wang Q, Li Y. Construction of imidazole@defective hierarchical porous UiO-66 and fibrous composites for rapid and nonbuffered catalytic hydrolysis of organophosphorus nerve agents. J Colloid Interface Sci 2023; 652:1156-1169. [PMID: 37657216 DOI: 10.1016/j.jcis.2023.08.163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Hydrolytic destruction of toxic organophosphorus nerve agents by metal-organic framework (MOF) catalysts is commonly reliant on bulk water and volatile liquid base, preventing real-world implementation. Poor accessibility to MOF-based active sites in heterogeneous catalysis is also a crucial factor since reactants diffusion is limited by inherently small micropores. To overcome these practical limitations, a ligand-selective pyrolysis strategy was used to construct unsaturated Zr defects and additional mesopores in UiO-66(Zr). Owing to synergistic effect of Zr defects and hierarchical pores, hydrolysis rate constant (k) of nerve agent simulant DMNP (dimethyl 4-nitrophenyl phosphate) on optimal DHP-UiO-30% (defective hierarchical porous UiO-66) is 3.2 times higher than counterpart UiO-30% in N-ethylmorpholine buffer. Encapsulating imidazole (Im) into DHP-UiO-30% affords Im@DHP-UiO, mimicking phosphotriesterase. Im-72@DHP-UiO exhibits rapid DMNP detoxification with 99% conversion in 12 min and initial half-life (t1/2) of 1.8 min in nonbuffered water. As the first example of 'three-in-one' detoxifier, Im@DHP-UiO is further integrated onto nonwoven fabric to construct Im@DHP/Fiber, achieving solid-phase detoxification at ambient humidity with t1/2 of 19.6 min and final conversion of 91%. This is comparable to many powdered catalysts in aqueous solution buffered by volatile bases. This unified strategy is critical and viable to efficiently hydrolyze nerve agents in practical settings.
Collapse
Affiliation(s)
- Jun Dai
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Dazhao Wang
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Juan Yang
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Institute of Chemical Safety, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Ran Tian
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yao Li
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Institute of Chemical Safety, Henan Polytechnic University, Jiaozuo 454003, China
| |
Collapse
|
7
|
Zhao H, Tao CA, Zhao S, Zou X, Wang F, Wang J. Porphyrin-Moiety-Functionalized Metal-Organic Layers Exhibiting Catalytic Capabilities for Detoxifying Nerve Agent and Blister Agent Simulants. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3297-3306. [PMID: 36608147 DOI: 10.1021/acsami.2c18126] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of very efficient bifunctional catalysts for the simultaneous detoxification of two kinds of the deadliest chemical warfare agents (CWAs), nerve agent and blister agent, is highly desirable. In this study, two porphyrin-based ligands [tetrakis(4-carboxyphenyl) porphyrin (TCPP) and protoporphyrin IX (PPIX)] are introduced into 2D Zr-1,3,5-tris(4-carboxyphenyl)benzene (BTB) metal-organic layers (MOLs), composed of six-connected Zr6 nodes and the tritopic carboxylate ligand BTB, by a solvent-assisted ligand incorporation method. The loads of TCPP and PPIX are 6.4 and 10.9 wt %, respectively. The detoxification of simulants of the nerve agent and the blister agent was conducted to investigate the catalytic activity of porphyrin-moiety-functionalized MOLs. The reaction half-life of optimal TCPP-functionalized MOL catalyzing the hydrolysis of a nerve agent simulant is only 2.8 min, meanwhile, the half-life of the selective catalytic oxidation of a blister agent simulant is only 1.2 min under LED illumination. More importantly, such a degradation half-life is only about 4 min under natural sunlight (∼60 mW/cm2). To our knowledge, TCPP-functionalized MOL is by far the most efficient catalyst for blister agent simulant degradation under solar light. Therefore, 2D ultrathin MOLs on demand appear to be a promising and efficient material platform for the development of bifunctional catalysts for CWA protection.
Collapse
Affiliation(s)
- He Zhao
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Cheng-An Tao
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Shiyin Zhao
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Xiaorong Zou
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Fang Wang
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Jianfang Wang
- College of Science, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
8
|
Tao CA, Li Y, Wang J. The progress of electrochromic materials based on metal–organic frameworks. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Wang QY, Sun ZB, Zhang M, Zhao SN, Luo P, Gong CH, Liu WX, Zang SQ. Cooperative Catalysis between Dual Copper Centers in a Metal–Organic Framework for Efficient Detoxification of Chemical Warfare Agent Simulants. J Am Chem Soc 2022; 144:21046-21055. [DOI: 10.1021/jacs.2c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qian-You Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi-Bing Sun
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Na Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Luo
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Chun-Hua Gong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Xiao Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Makiura R. Creation of metal–organic framework nanosheets by the Langmuir-Blodgett technique. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Zhou C, Yuan B, Zhang S, Yang G, Lu L, Li H, Tao CA. Ultrafast Degradation and High Adsorption Capability of a Sulfur Mustard Simulant under Ambient Conditions Using Granular UiO-66-NH 2 Metal-Organic Gels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23383-23391. [PMID: 35549001 DOI: 10.1021/acsami.2c02401] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have been considered as prospective materials for the degradation of nerve chemical warfare agents (CWAs) but show poor catalytic performance toward blister agents. Moreover, the powder issues and the poor adsorption capability also remain as the major challenges for the application of Zr-MOFs in practical CWA detoxification. Herein, a series of defected granular UiO-66-NH2 metal-organic gels are synthesized via adjusting the amount of added concentrated hydrochloric acid for the decontamination of 2-chloroethyl ethyl sulfide (2-CEES), a sulfur mustard simulant. The half-life of 2-CEES decontaminated by defected granular UiO-66-NH2 metal-organic gels can be shortened to 7.6 min, which is the highest reported value for MOFs under ambient conditions. The mechanism of decontamination is that the amino group on the linkers in UiO-66-NH2 MOGs undergoes a substitution reaction with 2-CEES to yield 2-(2-(ethylthio)ethylamino)terephthalic acid, which is less toxic and fixed in the frameworks. The recycling test corroborates that the granular UiO-66-NH2 xerogels possess good stability and reusability. Static adsorption and desorption tests show that UiO-66-NH2 xerogels possess a high 2-CEES vapor adsorption capacity of 802 mg/g after exposure for 1 d and only 28 wt % desorption capacity after air exposure for 7 d. The dual function of ultrafast degradation and high adsorption capability provide a firm foundation for using UiO-66-NH2 xerogels as a future protection media.
Collapse
Affiliation(s)
- Chuan Zhou
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Bo Yuan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Shouxin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Guang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Lin Lu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Cheng-An Tao
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
12
|
Zhao J, Chen R, Huang J, Wang F, Tao CA, Wang J. Ultrafast Synthesis of Ultrathin Two-Dimensional Metal–Organic Framework Nanosheets with High Space-Time Yield. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c04096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jie Zhao
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| | - Rui Chen
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| | - Jian Huang
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| | - Fang Wang
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| | - Cheng-An Tao
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| | - Jianfang Wang
- College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|