1
|
Gu S, Zhang K, Xu M, Li L, Yu H, Tao H. Mechanism insights into customized 2D nanoconfined catalyst via peroxymonosulfate activation for efficient sulfamethoxazole degradation: Key roles of electronic structure and non-radical pathway. ENVIRONMENTAL RESEARCH 2025; 267:120732. [PMID: 39743010 DOI: 10.1016/j.envres.2024.120732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/15/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
The technology to solve the problem of the efficient pollutant removal in peroxymonosulfate (PMS) activation was the ultimate goal. There was an urgent need to achieving higher catalytic activity and oxidation efficiency. Herein, we present a MgAl-based layered double hydroxide assembled as a 2D confined catalyst (MgAl-Co-LDH) with Co metal in chelated form (Co-EDTA) for highly efficient PMS activation degrading sulfamethoxazole (SMX). Co-EDTA as an active site enlarged the interlayer height of MgAl-LDH to form a nanoconfined space. The confinement interlayer structure acted as a mediator for electron transfer, which improved the effective collision of active sites with PMS and SMX. The confined catalyst had a rate constant of 0.2262 min-1, which was much superior to the non-confined catalyst by 8.76 times. A series of experiments proved that the reactive species transformed the radical pathway into singlet oxygen (1O2). The density functional theory calculations proved that the capability of PMS cleavage was optimized and modulated the electronic structure of MgAl-Co-LDH, which enhanced the reactivity of the D-band center electrons of Co-active sites. This study offered a method to investigate the catalytic degradation mechanisms of confined catalysts used in wastewater treatment.
Collapse
Affiliation(s)
- Siyi Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Kai Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Miqi Xu
- Shanghai Luwan Senior High School, No. 885 Xietu Rd., PR China
| | - Liang Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Haixiang Yu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai, 200093, PR China.
| |
Collapse
|
2
|
Zhang Y, Li L, Jiang X, Liu H, Guo X, Wu H, Huang X, Zhou L, Liu C, Shen XC. Injectable dual-network hyaluronic acid nanocomposite hydrogel for prevention of postoperative breast cancer recurrence and wound healing. Int J Biol Macromol 2025; 291:139125. [PMID: 39725096 DOI: 10.1016/j.ijbiomac.2024.139125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
High locoregional recurrence rates and potential wound infections remain a significant challenge for postoperative breast cancer patients. Herein, we developed a dual-network hyaluronic acid (HA) nanocomposite hydrogel composed of herring sperm DNA (hsDNA) bridged methacrylated HA (HAMA) and FeMg-LDH-ppsa nanohybrid chelated catechol-modified HA (HADA) for the prevention of breast cancer recurrent, anti-infection, and promoting wound healing. Dynamic reversible hsDNA cross-linking combined with metal-catechol chelating renders the hydrogel injectability, rapid self-healing ability, and enhanced mechanical properties. FeMg-LDH-ppsa nanohybrids obtained by in situ polymerization of aniline derivatives in the FeMg-LDH interlayer exhibited excellent photothermal effect. Upon near-infrared (NIR) irradiation, the photothermal effect mediated by FeMg-LDH-ppsa can unwind the hsDNA duplex, enabling the controlled release of preloaded DOX for synergistic photothermal-chemotherapy antitumor. Meanwhile, the catechol-metal (Fe3+/Mg2+) moieties in the hydrogel enhanced tissue adhesion and exhibited intrinsic antimicrobial and bioactive properties, which in combination with the NIR-assisted photothermal effect, significantly accelerated infected wound healing through sterilizing microorganisms, alleviating inflammation, re-epithelialization, and angiogenesis. Overall, this multifunctional hydrogel represented a promising candidate in postoperative wound management for simultaneous tumor elimination, antiinfection, and wound repair.
Collapse
Affiliation(s)
- Yu Zhang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Lixia Li
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Xiaohe Jiang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Haimeng Liu
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Xiaolu Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541001, PR China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Xiaohua Huang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Li Zhou
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Chanjuan Liu
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, PR China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541001, PR China
| |
Collapse
|
3
|
Zhang X, Mei X, Bao J, Song P, Lu H, Han C, Xu W. Flexible disk ultramicroelectrode: Facile preparation and high-resolution scanning electrochemical microscopy imaging. Anal Chim Acta 2025; 1336:343490. [PMID: 39788661 DOI: 10.1016/j.aca.2024.343490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Scanning electrochemical microscopy (SECM) is a kind of scanning probe technology that enables the obtainment of surface morphology and electrochemical information by recording changes in Faraday current triggered by the movement of probe. RESULTS In this work, flexible disk ultramicroelectrode (UME) with highly repeatable geometry are fabricated through a simple and universal strategy that involves vacuum pulling the glass capillaries inserted with platinum wire (gold wire, carbon fiber, etc.), followed by a rapidly heated sealing and polishing process. Based on the optical and electrochemical characterization, the as-prepared UMEs possess favorable geometric shape with a small RG value from 1.7 to 2. Consequently, when applied as probe components for SECM imaging on interdigital electrodes, it can achieve excellent spatial resolution and high sensitivity at short working distances. Moreover, due to the outstanding flexibility, the as-prepared UMEs can be minimally damaged arising from tip-sample collision and produce invisible trace on apple peel after the contact scanning, which is far superior to the traditional UME and suggests the application potential in bio-related fields. SIGNIFICANCE Our work will inspire the application of flexible UMEs as probe components in SECM, and consequently promote the widespread use of SECM with reduced collision threshold and low operational difficulty.
Collapse
Affiliation(s)
- Xinfang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xuanhao Mei
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - JinPeng Bao
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
| | - Ping Song
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
| | - Haiyan Lu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ce Han
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
4
|
Wen L, Chen H, Hao R. Wide-field imaging of active site distribution on semiconducting transition metal dichalcogenide nanosheets in electrocatalytic and photoelectrocatalytic processes. Chem Sci 2024:d4sc03640a. [PMID: 39323520 PMCID: PMC11421030 DOI: 10.1039/d4sc03640a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
Semiconducting transition metal dichalcogenide (TMD) nanosheets are promising materials for electrocatalysis and photoelectrocatalysis. However, the existing analytical approaches are inadequate at comprehensively describing the operation of narrow-bandgap semiconductors in these two processes. Furthermore, the distribution of the reactive sites on the electrode surface and the dynamic movement of carriers within these semiconductors during the reactions remain ambiguous. To plug these knowledge gaps, an in situ widefield imaging technique was devised in this study to investigate the electron distribution in different types of TMDs; notably, the method permits high-spatiotemporal-resolution analyses of electron-induced metal-ion reduction reactions in both electrocatalysis and photoelectrocatalysis. The findings revealed a unique complementary distribution of the active sites on WSe2 nanosheets during the two different cathodic processes. Our facile imaging approach can provide insightful information on the heterogeneous structure-property relationship at the electrochemical interfaces, facilitating the rational design of high-performance electrocatalytic/photoelectrocatalytic materials.
Collapse
Affiliation(s)
- Lisi Wen
- Department of Chemistry, Southern University of Science and Technology 518055 Shenzhen China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology 518055 Shenzhen China
- Shenzhen Key Laboratory of Functional Proteomics, Southern University of Science and Technology 518055 Shenzhen China
| | - Houkai Chen
- Department of Chemistry, Southern University of Science and Technology 518055 Shenzhen China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology 518055 Shenzhen China
- Shenzhen Key Laboratory of Functional Proteomics, Southern University of Science and Technology 518055 Shenzhen China
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology 518055 Shenzhen China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology 518055 Shenzhen China
- Shenzhen Key Laboratory of Functional Proteomics, Southern University of Science and Technology 518055 Shenzhen China
| |
Collapse
|
5
|
Zhou Y, Gao J, Ju M, Chen Y, Yuan H, Li S, Li J, Guo D, Hong M, Yang S. Combustion Growth of NiFe Layered Double Hydroxide for Efficient and Durable Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28526-28536. [PMID: 38775170 DOI: 10.1021/acsami.4c03766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
NiFe layered double hydroxide (LDH) with abundant heterostructures represents a state-of-the-art electrocatalyst for the alkaline oxygen evolution reaction (OER). Herein, NiFe LDH/Fe2O3 nanosheet arrays have been fabricated by facile combustion of corrosion-engineered NiFe foam (NFF). The in situ grown, self-supported electrocatalyst exhibited a low overpotential of 248 mV for the OER at 50 mA cm-2, a small Tafel slope of 31 mV dec-1, and excellent durability over 100 h under the industrial benchmarking 500 mA cm-2 current density. A balanced Ni and Fe composition under optimal corrosion and combustion contributed to the desirable electrochemical properties. Comprehensive ex-situ analyses and operando characterizations including Fourier-transformed alternating current voltammetry (FTACV) and in situ Raman demonstrate the beneficial role of modulated interfacial electron transfer, dynamic atomic structural transformation to NiOOH, and the high-valence active metal sites. This study provides a low-cost and easy-to-expand way to synthesize efficient and durable electrocatalysts.
Collapse
Affiliation(s)
- Yu Zhou
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Jinqiang Gao
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Min Ju
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yanpeng Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Haifeng Yuan
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Simeng Li
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Mei Hong
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shihe Yang
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
6
|
Yang S, Liu X, Li S, Yuan W, Yang L, Wang T, Zheng H, Cao R, Zhang W. The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts. Chem Soc Rev 2024; 53:5593-5625. [PMID: 38646825 DOI: 10.1039/d3cs01031g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The water oxidation reaction, a crucial process for solar energy conversion, has garnered significant research attention. Achieving efficient energy conversion requires the development of cost-effective and durable water oxidation catalysts. To design effective catalysts, it is essential to have a fundamental understanding of the reaction mechanisms. This review presents a comprehensive overview of recent advancements in the understanding of the mechanisms of water oxidation using transition metal-based heterogeneous electrocatalysts, including Mn, Fe, Co, Ni, and Cu-based catalysts. It highlights the catalytic mechanisms of different transition metals and emphasizes the importance of monitoring of key intermediates to explore the reaction pathway. In addition, advanced techniques for physical characterization of water oxidation intermediates are also introduced, for the purpose of providing information for establishing reliable methodologies in water oxidation research. The study of transition metal-based water oxidation electrocatalysts is instrumental in providing novel insights into understanding both natural and artificial energy conversion processes.
Collapse
Affiliation(s)
- Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wenjie Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Luna Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Ting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
7
|
Askarova G, Barman K, Mirkin MV. Quantitative Measurements of Electrocatalytic Reaction Rates with NanoSECM. Anal Chem 2024; 96:6089-6095. [PMID: 38574269 DOI: 10.1021/acs.analchem.4c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Scanning electrochemical microscopy (SECM) has been extensively used for mapping electrocatalytic surface reactivity; however, most of the studies were carried out using micrometer-sized tips, and no quantitative kinetic experiments on the nanoscale have yet been reported to date. As the diffusion-limited current density at a nanometer-sized electrode is very high, an inner-sphere electron-transfer process occurring at a nanotip typically produces a kinetic current at any attainable overpotential. Here, we develop a theory for substrate generation/tip collection (SG/TC) and feedback modes of SECM with a kinetic tip current and use it to evaluate the rates of hydrogen and oxygen evolution reactions in a neutral aqueous solution from the current-distance curves. The possibility of using chemically modified nanotips for kinetic measurements is also demonstrated. The effect of the substrate size on the shape of the current-distance curves in SG/TC mode SECM experiments is discussed.
Collapse
Affiliation(s)
- Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Koushik Barman
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
8
|
Lin X, Wang Z, Cao S, Hu Y, Liu S, Chen X, Chen H, Zhang X, Wei S, Xu H, Cheng Z, Hou Q, Sun D, Lu X. Bioinspired trimesic acid anchored electrocatalysts with unique static and dynamic compatibility for enhanced water oxidation. Nat Commun 2023; 14:6714. [PMID: 37872171 PMCID: PMC10593801 DOI: 10.1038/s41467-023-42292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023] Open
Abstract
Layered double hydroxides are promising candidates for the electrocatalytic oxygen evolution reaction. Unfortunately, their catalytic kinetics and long-term stabilities are far from satisfactory compared to those of rare metals. Here, we investigate the durability of nickel-iron layered double hydroxides and show that ablation of the lamellar structure due to metal dissolution is the cause of the decreased stability. Inspired by the amino acid residues in photosystem II, we report a strategy using trimesic acid anchors to prepare the subsize nickel-iron layered double hydroxides with kinetics, activity and stability superior to those of commercial catalysts. Fundamental investigations through operando spectroscopy and theoretical calculations reveal that the superaerophobic surface facilitates prompt release of the generated O2 bubbles, and protects the structure of the catalyst. Coupling between the metals and coordinated carboxylates via C‒O‒Fe bonding prevents dissolution of the metal species, which stabilizes the electronic structure by static coordination. In addition, the uncoordinated carboxylates formed by dynamic evolution during oxygen evolution reaction serve as proton ferries to accelerate the oxygen evolution reaction kinetics. This work offers a promising way to achieve breakthroughs in oxygen evolution reaction stability and dynamic performance by introducing functional ligands with static and dynamic compatibilities.
Collapse
Affiliation(s)
- Xiaojing Lin
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China.
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Yuying Hu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China.
| | - Xiaodong Chen
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Hongyu Chen
- College of Science, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Xingheng Zhang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Shuxian Wei
- College of Science, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Hui Xu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Zhi Cheng
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Qi Hou
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China.
| |
Collapse
|
9
|
Santana Santos C, Jaato BN, Sanjuán I, Schuhmann W, Andronescu C. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem Rev 2023; 123:4972-5019. [PMID: 36972701 PMCID: PMC10168669 DOI: 10.1021/acs.chemrev.2c00766] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Scanning electrochemical probe microscopy (SEPM) techniques can disclose the local electrochemical reactivity of interfaces in single-entity and sub-entity studies. Operando SEPM measurements consist of using a SEPM tip to investigate the performance of electrocatalysts, while the reactivity of the interface is simultaneously modulated. This powerful combination can correlate electrochemical activity with changes in surface properties, e.g., topography and structure, as well as provide insight into reaction mechanisms. The focus of this review is to reveal the recent progress in local SEPM measurements of the catalytic activity of a surface toward the reduction and evolution of O2 and H2 and electrochemical conversion of CO2. The capabilities of SEPMs are showcased, and the possibility of coupling other techniques to SEPMs is presented. Emphasis is given to scanning electrochemical microscopy (SECM), scanning ion conductance microscopy (SICM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical cell microscopy (SECCM).
Collapse
Affiliation(s)
- Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Bright Nsolebna Jaato
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Ignacio Sanjuán
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Technical Chemistry III, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
10
|
New MgFeAl-LDH Catalysts for Claisen-Schmidt Condensation. Molecules 2022; 27:molecules27238391. [PMID: 36500481 PMCID: PMC9740334 DOI: 10.3390/molecules27238391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
A rapid, cheap and feasible new approach was used to synthesize the Mg0.375Fe0.375Al0.25-LDH in the presence of tetramethylammonium hydroxide (TMAH), as a nontraditional hydrolysis agent, applying both mechano-chemical (MC) and co-precipitation methods (CP). For comparison, these catalysts were also synthesized using traditional inorganic alkalis. The mechano-chemical method brings several advantages since the number of steps and the energy involved are smaller than in the co-precipitation method, while the use of organic alkalis eliminates the possibility of contaminating the final solid with alkaline cations. The memory effect was also investigated. XRD studies showed Fe3O4 as stable phase in all solids. Regardless of the alkalis and synthesis methods used, the basicity of catalysts followed the trend: mixed oxides > parent LDH > hydrated LDH. The catalytic activity of the catalysts in the Claisen−Schmidt condensation between benzaldehyde and cyclohexanone showed a linear dependence to the basicity values. After 2 h, the calcined sample cLDH-CO32−/OH−-CP provided a conversion value of 93% with a total selectivity toward 2,6-dibenzylidenecyclohexanone. The presence of these catalysts in the reaction media inhibited the oxidation of benzaldehyde to benzoic acid. Meanwhile, for the self-condensation of cyclohexanone, the conversions to mono- and di-condensed compounds did not exceed 3.8%.
Collapse
|
11
|
Sudare T, Yamaguchi T, Ueda M, Shiiba H, Tanaka H, Tipplook M, Hayashi F, Teshima K. Critical role of water structure around interlayer ions for ion storage in layered double hydroxides. Nat Commun 2022; 13:6448. [PMID: 36307449 DOI: 10.1038/s41467-022-34124-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Water-containing layered materials have found various applications such as water purification and energy storage. The highly structured water molecules around ions under the confinement between the layers determine the ion storage ability. Yet, the relationship between the configuration of interlayer ions and water structure in high ion storage layered materials is elusive. Herein, using layered double hydroxides, we demonstrate that the water structure is sensitive to the filling density of ions in the interlayer space and governs the ion storage. For ion storage of dilute nitrate ions, a 24% decrease in the filling density increases the nitrate storage capacity by 300%. Quartz crystal microbalance with dissipation monitoring studies, combined with multimodal ex situ experiments and theoretical calculations, reveal that the decreasing filling density effectively facilitates the 2D hydrogen-bond networking structure in water around interlayer nitrate ions along with minimal change in the layered structure, leading to the high storage capacity.
Collapse
Affiliation(s)
- Tomohito Sudare
- Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan.
| | - Takuro Yamaguchi
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| | - Mizuki Ueda
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| | - Hiromasa Shiiba
- Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| | - Hideki Tanaka
- Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| | - Mongkol Tipplook
- Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| | - Fumitaka Hayashi
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| | - Katsuya Teshima
- Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan. .,Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan.
| |
Collapse
|
12
|
Cai R, Sun M, Ren J, Ju M, Long X, Huang B, Yang S. Unexpected high selectivity for acetate formation from CO 2 reduction with copper based 2D hybrid catalysts at ultralow potentials. Chem Sci 2021; 12:15382-15388. [PMID: 34976359 PMCID: PMC8635182 DOI: 10.1039/d1sc05441d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/06/2021] [Indexed: 11/21/2022] Open
Abstract
Copper-based catalysts are efficient for CO2 reduction affording commodity chemicals. However, Cu(i) active species are easily reduced to Cu(0) during the CO2RR, leading to a rapid decay of catalytic performance. Herein, we report a hybrid-catalyst that firmly anchors 2D-Cu metallic dots on F-doped CuxO nanoplates (CuxOF), synthesized by electrochemical-transformation under the same conditions as the targeted CO2RR. The as-prepared Cu/CuxOF hybrid showed unusual catalytic activity towards the CO2RR for CH3COO− generation, with a high FE of 27% at extremely low potentials. The combined experimental and theoretical results show that nanoscale hybridization engenders an effective s,p-d coupling in Cu/CuxOF, raising the d-band center of Cu and thus enhancing electroactivity and selectivity for the acetate formation. This work highlights the use of electronic interactions to bias a hybrid catalyst towards a particular pathway, which is critical for tuning the activity and selectivity of copper-based catalysts for the CO2RR. A two-dimensional (2D) copper hybrid catalyst (Cu/CuxOF) composed of metallic Cu well dispersed on 2D F-doped CuxO nanoplates (CuxOF) is reported, which shows high catalytic activity toward the CO2RR for acetate generation.![]()
Collapse
Affiliation(s)
- Rongming Cai
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University Shenzhen 518055 China .,Institute of Biomedical Engineering, Shenzhen Bay Laboratory Shenzhen 518107 China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
| | - Jiazheng Ren
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University Shenzhen 518055 China
| | - Min Ju
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University Shenzhen 518055 China
| | - Xia Long
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University Shenzhen 518055 China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong SAR China
| | - Shihe Yang
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University Shenzhen 518055 China .,Institute of Biomedical Engineering, Shenzhen Bay Laboratory Shenzhen 518107 China
| |
Collapse
|