1
|
Cuzzucoli Crucitti V, Hajiali H, Dundas AA, Jayawarna V, Tomolillo D, Francolini I, Vuotto C, Salmeron-Sanchez M, Dalby MJ, Alexander MR, Wildman RD, Rose FRAJ, Irvine DJ. Modulation of the biological response to surfaces through the controlled deposition of 3D polymeric surfactants. J Mater Chem B 2025; 13:4657-4670. [PMID: 40130352 DOI: 10.1039/d4tb01941e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Biomaterials play a crucial role in modern medicine through their use as medical implants and devices. However, they can support biofilm formation and infection, and lack integration with the surrounding human tissue at the implant site. This work reports the development of novel poly(ethyl acrylate) (PEA) based copolymers that address both issues. These PEA materials were molecularly designed polymeric surfactants (surfmers) synthesised via controlled radical polymerisations to achieve different polymeric architectures, (i.e., statistical and block copolymers). These were both deposited as structured 2D films on glass coverslips and used to manufacture monodisperse 3D micro-particles with functional surfaces (via microfluidics). ToF-SIMS was used to analyse these 2D and 3D surfaces to understand: (a) the surface arrangement of the monomer sequences exhibited by the different polymer structures and (b) how this surface monomer arrangement influenced mammalian fibroblast cell and/or Staphylococcus aureus behaviour at these film/particle surfaces. In addition, the form of the fibronectin (FN) network assembly's importance in promoting growth factor (GF) binding was probed using atomic force microscopy (AFM) on the 2D films. This confirmed that specific surfmer molecular surface organisations were achieved during film/micro-particle fabrication, which presented exterior functionalities that either prevent biofilm attachment or promote the formation of structured FN networks for GF binding.
Collapse
Affiliation(s)
- Valentina Cuzzucoli Crucitti
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Hadi Hajiali
- School of Pharmacy, Nottingham Biodiscovery Institute, Faculty of Science, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Adam A Dundas
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Vineetha Jayawarna
- Centre for the Cellular Microenvironment, School of Engineering, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, UK
| | - Dario Tomolillo
- Neuromicrobiology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Iolanda Francolini
- Dept of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Claudia Vuotto
- Neuromicrobiology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, School of Engineering, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Advanced Research Centre, University of Glasgow, Glasgow G11 6EW, UK
| | - Morgan R Alexander
- School of Pharmacy, Nottingham Biodiscovery Institute, Faculty of Science, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Ricky D Wildman
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Felicity R A J Rose
- School of Pharmacy, Nottingham Biodiscovery Institute, Faculty of Science, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Derek J Irvine
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
2
|
Latif A, Fisher LE, Dundas AA, Cuzzucoli Crucitti V, Imir Z, Lawler K, Pappalardo F, Muir BW, Wildman R, Irvine DJ, Alexander MR, Ghaemmaghami AM. Microparticles Decorated with Cell-Instructive Surface Chemistries Actively Promote Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2208364. [PMID: 36440539 DOI: 10.1002/adma.202208364] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Wound healing is a complex biological process involving close crosstalk between various cell types. Dysregulation in any of these processes, such as in diabetic wounds, results in chronic nonhealing wounds. Fibroblasts are a critical cell type involved in the formation of granulation tissue, essential for effective wound healing. 315 different polymer surfaces are screened to identify candidates which actively drive fibroblasts toward either pro- or antiproliferative functional phenotypes. Fibroblast-instructive chemistries are identified, which are synthesized into surfactants to fabricate easy to administer microparticles for direct application to diabetic wounds. The pro-proliferative microfluidic derived particles are able to successfully promote neovascularization, granulation tissue formation, and wound closure after a single application to the wound bed. These active novel bio-instructive microparticles show great potential as a route to reducing the burden of chronic wounds.
Collapse
Affiliation(s)
- Arsalan Latif
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Leanne E Fisher
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Adam A Dundas
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Zeynep Imir
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Karen Lawler
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Benjamin W Muir
- Commonwealth Scientific & Industrial Research Organization, Canberra ACT 2601, Australia
| | - Ricky Wildman
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Derek J Irvine
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | |
Collapse
|
3
|
Crawford LA, Cuzzucoli Crucitti V, Stimpson A, Morgan C, Blake J, Wildman RD, Hook AL, Alexander MR, Irvine DJ, Avery SV. A potential alternative to fungicides using actives-free (meth)acrylate polymers for protection of wheat crops from fungal attachment and infection. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:8558-8569. [PMID: 38013846 PMCID: PMC10614722 DOI: 10.1039/d3gc01911j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 11/29/2023]
Abstract
Fungicidal compounds are actives widely used for crop protection from fungal infection, but they can also kill beneficial organisms, enter the food chain and promote resistant pathogen strains from overuse. Here we report the first field crop trial of homopolymer materials that prevent fungal attachment, showing successful crop protection via an actives-free approach. In the trial, formulations containing two candidate polymers were applied to young wheat plants that were subject to natural infection with the wheat pathogen Zymoseptoria tritici. A formulation containing one of the candidate polymers, poly(di(ethylene glycol) ethyl ether acrylate) (abbreviated DEGEEA), produced a significant reduction (26%) in infection of the crop by Z. tritici, delivering protection against fungal infection that compared favourably with three different commercially established fungicide programmes tested in parallel. Furthermore, the sprayed polymers did not negatively affect wheat growth. The two lead polymer candidates were initially identified by bio-performance testing using in vitro microplate- and leaf-based assays and were taken forward successfully into a programme to optimize and scale-up their synthesis and compound them into a spray formulation. Therefore, the positive field trial outcome has also established the validity of the smaller-scale, laboratory-based bioassay data and scale-up methodologies used. Because fungal attachment to plant surfaces is a first step in many crop infections, this non-eluting polymer: (i) now offers significant potential to deliver protection against fungal attack, while (ii) addressing the fourth and aligning with the eleventh principles of green chemistry by using chemical products designed to preserve efficacy of function while reducing toxicity. A future focus should be to develop the material properties for this and other applications including other fungal pathogens.
Collapse
Affiliation(s)
- Liam A Crawford
- School of Life Sciences, University Park, University of, Nottingham Nottingham NG7 2RD UK
| | - Valentina Cuzzucoli Crucitti
- Centre for Additive Manufacturing, Department of Chemical and Environmental Engineering, University Park, University of Nottingham Nottingham NG7 2RD UK
| | - Amy Stimpson
- Centre for Additive Manufacturing, Department of Chemical and Environmental Engineering, University Park, University of Nottingham Nottingham NG7 2RD UK
| | - Chloe Morgan
- RSK ADAS Ltd, Rosemaund, Preston Wynne Hereford HR1 3PG UK
| | - Jonathan Blake
- RSK ADAS Ltd, Rosemaund, Preston Wynne Hereford HR1 3PG UK
| | - Ricky D Wildman
- Centre for Additive Manufacturing, Department of Chemical and Environmental Engineering, University Park, University of Nottingham Nottingham NG7 2RD UK
| | - Andrew L Hook
- Centre for Additive Manufacturing, Department of Chemical and Environmental Engineering, University Park, University of Nottingham Nottingham NG7 2RD UK
| | - Morgan R Alexander
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University Park, University of Nottingham Nottingham NG7 2RD UK
| | - Derek J Irvine
- Centre for Additive Manufacturing, Department of Chemical and Environmental Engineering, University Park, University of Nottingham Nottingham NG7 2RD UK
| | - Simon V Avery
- School of Life Sciences, University Park, University of, Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
4
|
Jacob PL, Brugnoli B, Del Giudice A, Phan H, Chauhan VM, Beckett L, Gillis RB, Moloney C, Cavanagh RJ, Krumins E, Reynolds-Green M, Lentz JC, Conte C, Cuzzucoli Crucitti V, Couturaud B, Galantini L, Francolini I, Howdle SM, Taresco V. Poly (diglycerol adipate) variants as enhanced nanocarrier replacements in drug delivery applications. J Colloid Interface Sci 2023; 641:1043-1057. [PMID: 36996683 DOI: 10.1016/j.jcis.2023.03.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Sustainably derived poly(glycerol adipate) (PGA) has been deemed to deliver all the desirable features expected in a polymeric scaffold for drug-delivery, including biodegradability, biocompatibility, self-assembly into nanoparticles (NPs) and a functionalisable pendant group. Despite showing these advantages over commercial alkyl polyesters, PGA suffers from a series of key drawbacks caused by poor amphiphilic balance. This leads to weak drug-polymer interactions and subsequent low drug-loading in NPs, as well as low NPs stability. To overcome this, in the present work, we applied a more significant variation of the polyester backbone while maintaining mild and sustainable polymerisation conditions. We have investigated the effect of the variation of both hydrophilic and hydrophobic segments upon physical properties and drug interactions as well as self-assembly and NPs stability. For the first time we have replaced glycerol with the more hydrophilic diglycerol, as well as adjusting the final amphiphilic balance of the polyester repetitive units by incorporating the more hydrophobic 1,6-n-hexanediol (Hex). The properties of the novel poly(diglycerol adipate) (PDGA) variants have been compared against known polyglycerol-based polyesters. Interestingly, while the bare PDGA showed improved water solubility and diminished self-assembling ability, the Hex variation demonstrated enhanced features as a nanocarrier. In this regard, PDGAHex NPs were tested for their stability in different environments and for their ability to encode enhanced drug loading. Moreover, the novel materials have shown good biocompatibility in both in vitro and in vivo (whole organism) experiments.
Collapse
Affiliation(s)
- Philippa L Jacob
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | - Benedetta Brugnoli
- Dept. of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | | | - Hien Phan
- Institut de Chimie et des Matériaux Paris-Est, Université de Paris-Est Créteil, CNRS UMR 7182, 2 rue Henri Dunant, 94320 Thiais, France
| | - Veeren M Chauhan
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham NG7 2RD, United Kingdom
| | - Laura Beckett
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham NG7 2RD, United Kingdom
| | - Richard B Gillis
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom; Biomaterials Group, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom; College of Business, Technology and Engineering, Sheffield Hallam University, Food and Nutrition Group, Sheffield S1 1WB, United Kingdom
| | - Cara Moloney
- School of Medicine, BioDiscovery Institute-3, University Park, Nottingham NG7 2RD, United Kingdom
| | - Robert J Cavanagh
- School of Medicine, BioDiscovery Institute-3, University Park, Nottingham NG7 2RD, United Kingdom
| | - Eduards Krumins
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | | | - Joachim C Lentz
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Valentina Cuzzucoli Crucitti
- Centre for Additive Manufacturing and Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Benoit Couturaud
- Institut de Chimie et des Matériaux Paris-Est, Université de Paris-Est Créteil, CNRS UMR 7182, 2 rue Henri Dunant, 94320 Thiais, France
| | - Luciano Galantini
- Dept. of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Iolanda Francolini
- Dept. of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Steven M Howdle
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | - Vincenzo Taresco
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
5
|
Cuzzucoli Crucitti V, Ilchev A, Moore JC, Fowler HR, Dubern JF, Sanni O, Xue X, Husband BK, Dundas AA, Smith S, Wildman JL, Taresco V, Williams P, Alexander MR, Howdle SM, Wildman RD, Stockman RA, Irvine DJ. Predictive Molecular Design and Structure-Property Validation of Novel Terpene-Based, Sustainably Sourced Bacterial Biofilm-Resistant Materials. Biomacromolecules 2023; 24:576-591. [PMID: 36599074 PMCID: PMC9930090 DOI: 10.1021/acs.biomac.2c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Presented in this work is the use of a molecular descriptor, termed the α parameter, to aid in the design of a series of novel, terpene-based, and sustainable polymers that were resistant to biofilm formation by the model bacterial pathogen Pseudomonas aeruginosa. To achieve this, the potential of a range of recently reported, terpene-derived monomers to deliver biofilm resistance when polymerized was both predicted and ranked by the application of the α parameter to key features in their molecular structures. These monomers were derived from commercially available terpenes (i.e., α-pinene, β-pinene, and carvone), and the prediction of the biofilm resistance properties of the resultant novel (meth)acrylate polymers was confirmed using a combination of high-throughput polymerization screening (in a microarray format) and in vitro testing. Furthermore, monomers, which both exhibited the highest predicted biofilm anti-biofilm behavior and required less than two synthetic stages to be generated, were scaled-up and successfully printed using an inkjet "valve-based" 3D printer. Also, these materials were used to produce polymeric surfactants that were successfully used in microfluidic processing to create microparticles that possessed bio-instructive surfaces. As part of the up-scaling process, a novel rearrangement was observed in a proposed single-step synthesis of α-terpinyl methacrylate via methacryloxylation, which resulted in isolation of an isobornyl-bornyl methacrylate monomer mixture, and the resultant copolymer was also shown to be bacterial attachment-resistant. As there has been great interest in the current literature upon the adoption of these novel terpene-based polymers as green replacements for petrochemical-derived plastics, these observations have significant potential to produce new bio-resistant coatings, packaging materials, fibers, medical devices, etc.
Collapse
Affiliation(s)
- Valentina Cuzzucoli Crucitti
- Centre of Additive Manufacturing, Department of Chemical and Environmental Engineering, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Aleksandar Ilchev
- Centre of Additive Manufacturing, Department of Chemical and Environmental Engineering, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Jonathan C Moore
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Harriet R Fowler
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Jean-Frédéric Dubern
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Olutoba Sanni
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Xuan Xue
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Bethany K Husband
- Centre of Additive Manufacturing, Department of Chemical and Environmental Engineering, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Adam A Dundas
- Centre of Additive Manufacturing, Department of Chemical and Environmental Engineering, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Sean Smith
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Joni L Wildman
- Centre of Additive Manufacturing, Department of Chemical and Environmental Engineering, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Morgan R Alexander
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Steven M Howdle
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Ricky D Wildman
- Centre of Additive Manufacturing, Department of Chemical and Environmental Engineering, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Robert A Stockman
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| | - Derek J Irvine
- Centre of Additive Manufacturing, Department of Chemical and Environmental Engineering, University of Nottingham, University Park, NottinghamNG7 2RD, U.K
| |
Collapse
|
6
|
Jennings J, Webster-Aikman RR, Ward-O’Brien N, Xie A, Beattie DL, Deane OJ, Armes SP, Ryan AJ. Hydrocarbon-Based Statistical Copolymers Outperform Block Copolymers for Stabilization of Ethanol-Water Foams. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39548-39559. [PMID: 35984897 PMCID: PMC9437873 DOI: 10.1021/acsami.2c09910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Well-defined block copolymers have been widely used as emulsifiers, stabilizers, and dispersants in the chemical industry for at least 50 years. In contrast, nature employs amphiphilic proteins as polymeric surfactants whereby the spatial distribution of hydrophilic and hydrophobic amino acids within the polypeptide chains is optimized for surface activity. Herein, we report that polydisperse statistical copolymers prepared by conventional free-radical copolymerization can provide superior foaming performance compared to the analogous diblock copolymers. A series of predominantly (meth)acrylic comonomers are screened to identify optimal surface activity for foam stabilization of aqueous ethanol solutions. In particular, all-acrylic statistical copolymers comprising trimethylhexyl acrylate and poly(ethylene glycol) acrylate, P(TMHA-stat-PEGA), confer strong foamability and also lower the surface tension of a range of ethanol-water mixtures to a greater extent than the analogous block copolymers. For ethanol-rich hand sanitizer formulations, foam stabilization is normally achieved using environmentally persistent silicone-based copolymers or fluorinated surfactants. Herein, the best-performing fully hydrocarbon-based copolymer surfactants effectively stabilize ethanol-rich foams by a mechanism that resembles that of naturally-occurring proteins. This ability to reduce the surface tension of low-surface-energy liquids suggests a wide range of potential commercial applications.
Collapse
|