1
|
Tian X, Kim SM, Yoo JY, Jo MS, Yoon JB, Seo MH. Perfectly Spatial and Shape-Controllable Nanocrack Lithography via Localized Compressive-Shear Stress Coupling. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24513-24525. [PMID: 40269469 DOI: 10.1021/acsami.4c20778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Cracking-assisted nanofabrication techniques have gained widespread applications across diverse engineering fields for the creation of nanoscale features, valued for their simplicity, cost-effectiveness, and high resolution. However, conventional methods often struggle to control the density, shape, and uniformity of nanocracks due to random stress concentrations caused by material defects and uncontrolled mechanical stress distribution during nanocrack formation. To address these limitations, we developed a highly reliable and reproducible nanocrack patterning method capable of creating large-scale, customizable nanocrack patterns on flexible substrates via the compressive-shear stress coupling effect. Our approach utilizes photolithography-based microphotoresist structures and simultaneous bending and pressing to induce highly localized stresses at the corners of the structures, facilitating the formation of nanocracks. This method enables precise spatial and shape control of nanocrack patterns in functional materials on flexible substrates. For example, in platinum films on polymer substrates, we achieved a uniform and consistent average nanocrack spacing of 40 μm with a standard deviation as low as 0.1 μm across 100 parallel nanocracks. The technique is versatile and can be applied to various functional materials, such as copper and indium tin oxide. We further showed the creation of diverse curved and closed-shape nanocracks, including zigzag, wave, square, circle, parallelogram, and cross shapes, in copper thin films. Finally, we applied this method to various engineering fields to demonstrate its efficacy, including strain sensors with gauge factors of approximately 380, a three-dimensional pressure sensor array capable of reliably measuring pressures below 0.1 N, and nanowire patterning with highly uniform spacing (40 ± 0.5 μm) on polymer substrates that offered both flexibility and transparency.
Collapse
Affiliation(s)
- Xu Tian
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 10044, Sweden
| | - Sang-Min Kim
- Department of Information Convergence Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jae-Young Yoo
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16417, Republic of Korea
| | - Min-Seung Jo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Bio-Integrated Electronics, Northwestern University, 2145, Sheridan Road, Evanston, Illinois 60208, United States of America
| | - Jun-Bo Yoon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min-Ho Seo
- Department of Information Convergence Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
- School of Biomedical Convergence Engineering, College of Information & Biomedical Engineering, Pusan National University, 49, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do 43241, Republic of Korea
| |
Collapse
|
2
|
Li D, Liu W, Peng T, Liu Y, Zhong L, Wang X. Janus Textile: Advancing Wearable Technology for Autonomous Sweat Management and Beyond. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409730. [PMID: 40042440 DOI: 10.1002/smll.202409730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/09/2025] [Indexed: 04/03/2025]
Abstract
To alleviate the discomfort caused by excessive sweating, there is a growing emphasis on developing wearable textiles that can evacuate sweat autonomously. These advanced fabrics, unlike their absorbent and retention-prone predecessors, harness the Janus structure-distinguished by its asymmetric wettability-to facilitate one-way transport of liquid. This unique characteristic has significant potential in addressing issues related to excessive bodily moisture and propelling the realm of smart wearables. This review offers a comprehensive overview of the advancements in Janus-structured textiles within the wearable field, delving into the mechanisms behind their unidirectional liquid transport, which rely on chemical gradient and curvature gradient strategies, alongside the methodologies for achieving asymmetric wettability. It further spotlights the multifaceted applications of Janus-based textiles in wearables, including moisture and thermal management, wound care, and sweat analysis. In addition to examining existing hurdles, the review also explores avenues for future innovation, envisioning a new era of Janus textiles tailored for personalized comfort and health monitoring capabilities.
Collapse
Affiliation(s)
- Dan Li
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Weiyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Tianhan Peng
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yunya Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Lieshuang Zhong
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| |
Collapse
|
3
|
Liu N, Lu Y, Li Z, Zhao H, Yu Q, Huang Y, Yang J, Huang L. Smart Wrinkled Interfaces: Patterning, Morphing, and Coding of Polymer Surfaces by Dynamic Anisotropic Wrinkling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18837-18856. [PMID: 39207273 DOI: 10.1021/acs.langmuir.4c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In contrast to traditional static surfaces, smart patterned surfaces with periodical and reversible morphologies offer limitless opportunities for encoding surface functions and properties on demand, facilitating their widespread application as functional building blocks in various devices. Advances in intelligently controlling the macroscopic properties of these smart surfaces have been accomplished through various techniques (such as three-dimensional printing, imprint lithography and femtosecond laser) and responsive materials. In contrast to the sophisticated techniques above, dynamic anisotropic wrinkling, taking advantage of dynamic programmable manipulation of surface wrinkling and its orientation, offers a powerful alternative for fabricating dynamic periodical patterns due to its spontaneous formation, versatility, convenient scale-up fabrication, and sensitivity to various stimuli. This review comprehensively summarizes recent advances in smart patterned surfaces with dynamic oriented wrinkles, covering design principles, fabrication techniques, representative types of physical and chemical stimuli, as well as fine-tuning of wrinkle dimensions and orientation. Finally, advanced applications of these smart patterned surfaces are presented, along with a discussion of current challenges and future prospects in this rapidly evolving field. This review would offer some insights and guidelines for designing and engineering novel stimuli-responsive smart wrinkled surfaces, thereby facilitating their sustainable development and progressing toward commercialization.
Collapse
Affiliation(s)
- Ning Liu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yenie Lu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ziyue Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hongyang Zhao
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingyue Yu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yaxin Huang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Liang Huang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
4
|
Askar CB, Cmager N, Altay R, Araci IE. Human Activity Recording Based on Skin-Strain-Actuated Microfluidic Pumping in Asymmetrically Designed Micro-Channels. SENSORS (BASEL, SWITZERLAND) 2024; 24:4207. [PMID: 39000986 PMCID: PMC11244335 DOI: 10.3390/s24134207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
The capability to record data in passive, image-based wearable sensors can simplify data readouts and eliminate the requirement for the integration of electronic components on the skin. Here, we developed a skin-strain-actuated microfluidic pump (SAMP) that utilizes asymmetric aspect ratio channels for the recording of human activity in the fluidic domain. An analytical model describing the SAMP's operation mechanism as a wearable microfluidic device was established. Fabrication of the SAMP was achieved using soft lithography from polydimethylsiloxane (PDMS). Benchtop experimental results and theoretical predictions were shown to be in good agreement. The SAMP was mounted on human skin and experiments conducted on volunteer subjects demonstrated the SAMP's capability to record human activity for hundreds of cycles in the fluidic domain through the observation of a stable liquid meniscus. Proof-of-concept experiments further revealed that the SAMP could quantify a single wrist activity repetition or distinguish between three different shoulder activities.
Collapse
Affiliation(s)
| | - Nick Cmager
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Rana Altay
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - I Emre Araci
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA
| |
Collapse
|
5
|
Roshan U, Mudugamuwa A, Cha H, Hettiarachchi S, Zhang J, Nguyen NT. Actuation for flexible and stretchable microdevices. LAB ON A CHIP 2024; 24:2146-2175. [PMID: 38507292 DOI: 10.1039/d3lc01086d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Flexible and stretchable microdevices incorporate highly deformable structures, facilitating precise functionality at the micro- and millimetre scale. Flexible microdevices have showcased extensive utility in the fields of biomedicine, microfluidics, and soft robotics. Actuation plays a critical role in transforming energy between different forms, ensuring the effective operation of devices. However, when it comes to actuating flexible microdevices at the small millimetre or even microscale, translating actuation mechanisms from conventional rigid large-scale devices is not straightforward. The recent development of actuation mechanisms leverages the benefits of device flexibility, particularly in transforming conventional actuation concepts into more efficient approaches for flexible devices. Despite many reviews on soft robotics, flexible electronics, and flexible microfluidics, a specific and systematic review of the actuation mechanisms for flexible and stretchable microdevices is still lacking. Therefore, the present review aims to address this gap by providing a comprehensive overview of state-of-the-art actuation mechanisms for flexible and stretchable microdevices. We elaborate on the different actuation mechanisms based on fluid pressure, electric, magnetic, mechanical, and chemical sources, thoroughly examining and comparing the structure designs, characteristics, performance, advantages, and drawbacks of these diverse actuation mechanisms. Furthermore, the review explores the pivotal role of materials and fabrication techniques in the development of flexible and stretchable microdevices. Finally, we summarise the applications of these devices in biomedicine and soft robotics and provide perspectives on current and future research.
Collapse
Affiliation(s)
- Uditha Roshan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Amith Mudugamuwa
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Samith Hettiarachchi
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
6
|
Wang Q, Wang W, Lu C, Hu L, Ni Y, Yu S. Retraction of "Three-Axial Strain-Triggered Multimode Wrinkles with Tuneable Frictional and Optical Performances". ACS APPLIED MATERIALS & INTERFACES 2023; 15:45538. [PMID: 37390007 DOI: 10.1021/acsami.3c06867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
|
7
|
Wang P, Ding H, Li X, Liu Y, Sun Y, Li Y, Xu G, Chen S, Wang X. Stretchable and Self-Adhesive Humidity-Sensing Patch for Multiplexed Non-Contact Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38562-38571. [PMID: 37530029 DOI: 10.1021/acsami.3c06767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The slippage of moisture-sensitive materials from substrates during bending or stretching is a common issue that causes baseline drift and even failure of the flexible humidity sensors, which are essential components of wearable electronic devices. In this study, we report a stretchable, self-adhesive, and transparent humidity-sensing electronic patch comprising liquid metal particle electrodes with a stretchable serpentine structure and a humidity-sensing layer made of Ti3C2Tx MXene/carboxymethyl cellulose. This patch is constructed on a soft-hard integrated heterostructure substrate and demonstrates stable humidity-sensitive response performance at 100% tensile strain, along with autonomous adhesion to human skin. Additionally, it exhibits maximum response (1145.4%) at 90% relative humidity (RH), fast response and recovery time (1.4/5.9 s), elevated sensitivity (64.63%/% RH), and preserved humidity sensing under deformation, as well as easy scalability for multiplexed detection. We further illustrate the patch's potential applications in healthcare and environmental monitoring through a non-contact security door control system and wind monitor system. Our proposed strain-isolation strategy can be extended to other rigid conductive materials and stretchable substrates, providing a feasible mechanism for producing stretchable electronic skin patches.
Collapse
Affiliation(s)
- Peihe Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Hongyan Ding
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xiaofeng Li
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yangchengyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yi Sun
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yujing Li
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Guozhuang Xu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Shangda Chen
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
8
|
Liu N, Sun Q, Yang Z, Shan L, Wang Z, Li H. Wrinkled Interfaces: Taking Advantage of Anisotropic Wrinkling to Periodically Pattern Polymer Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207210. [PMID: 36775851 PMCID: PMC10131883 DOI: 10.1002/advs.202207210] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Periodically patterned surfaces can cause special surface properties and are employed as functional building blocks in many devices, yet remaining challenges in fabrication. Advancements in fabricating structured polymer surfaces for obtaining periodic patterns are accomplished by adopting "top-down" strategies based on self-assembly or physico-chemical growth of atoms, molecules, or particles or "bottom-up" strategies ranging from traditional micromolding (embossing) or micro/nanoimprinting to novel laser-induced periodic surface structure, soft lithography, or direct laser interference patterning among others. Thus, technological advances directly promote higher resolution capabilities. Contrasted with the above techniques requiring highly sophisticated tools, surface instabilities taking advantage of the intrinsic properties of polymers induce surface wrinkling in order to fabricate periodically oriented wrinkled patterns. Such abundant and elaborate patterns are obtained as a result of self-organizing processes that are rather difficult if not impossible to fabricate through conventional patterning techniques. Focusing on oriented wrinkles, this review thoroughly describes the formation mechanisms and fabrication approaches for oriented wrinkles, as well as their fine-tuning in the wavelength, amplitude, and orientation control. Finally, the major applications in which oriented wrinkled interfaces are already in use or may be prospective in the near future are overviewed.
Collapse
Affiliation(s)
- Ning Liu
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Qichao Sun
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Zhensheng Yang
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Linna Shan
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Zhiying Wang
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Hao Li
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| |
Collapse
|
9
|
Wang X, Huang J, Liu Y, Tan J, Chen S, Avila R, Xie Z. Design of protective and high sensitivity encapsulation layers in wearable devices. SCIENCE CHINA. TECHNOLOGICAL SCIENCES 2022; 66:223-232. [PMID: 36593863 PMCID: PMC9798368 DOI: 10.1007/s11431-022-2034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/17/2022] [Indexed: 06/17/2023]
Abstract
UNLABELLED Elastomeric encapsulation layers are widely used in soft, wearable devices to physically isolate rigid electronic components from external environmental stimuli (e.g., stress) and facilitate device sterilization for reusability. In devices experiencing large deformations, the stress-isolation effect of the top encapsulation layer can eliminate the damage to the electronic components caused by external forces. However, for health monitoring and sensing applications, the strain-isolation effect of the bottom encapsulation layer can partially block the physiological signals of interest and degrade the measurement accuracy. Here, an analytic model is developed for the strain- and stress-isolation effects present in wearable devices with elastomeric encapsulation layers. The soft, elastomeric encapsulation layers and main electronic components layer are modeled as transversely isotropic-elastic mediums and the strain- and stress-isolation effects are described using isolation indexes. The analysis and results show that the isolation effects strongly depend on the thickness, density, and elastic modulus of both the elastomeric encapsulation layers and the main electronic component layer. These findings, combined with the flexible mechanics design strategies of wearable devices, provide new design guidelines for future wearable devices to protect them from external forces while capturing the relevant physiological signals underneath the skin. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available in the online version of this article at 10.1007/s11431-022-2034-y.
Collapse
Affiliation(s)
- XiuFeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 China
| | - JieLong Huang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 China
| | - YangChengYi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 China
| | - JinYuan Tan
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 China
| | - ShangDa Chen
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 China
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208 USA
| | - ZhaoQian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
10
|
Zhang H, Qiu Y, Yu S, Ding C, Hu J, Qi H, Tian Y, Zhang Z, Liu A, Wu H. Wearable microfluidic patch with integrated capillary valves and pumps for sweat management and multiple biomarker analysis. BIOMICROFLUIDICS 2022; 16:044104. [PMID: 35915777 PMCID: PMC9338840 DOI: 10.1063/5.0092084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Wearable sweat sensors are essential for providing insight into human physiological health. The currently developed microfluidic sweat sensors have demonstrated the function of collecting and storing sweat. However, they detect more average concentrations of substances based on time periods, which leads to the fact that in situ real-time measurement for multiple biomarkers remains a grand challenge. Here, we propose a wearable epidermal microfluidic patch with integrated microfluidic pumps and micro-valves for accelerated and continuous collection of the sweat, where the micro-pumps ensure the complete separation of old and new sweat for real-time detection of real concentration of biomarkers in sweat. The biomarker concentration at different time periods is detected by introducing a burst valve, which is used to assist in the analysis of the real-time detection. A quantitative relationship between the minimum burst pressure difference required for sequential collection and the size of the microchannel structure is established to overcome the effects of additional resistance at the gas-liquid interface. Additionally, the sensing modules, including sodium ion, chlorine ion, glucose, and pH level in sweat, are integrated into the patch to realize in situ, real-time detection of multiple biomarkers in the human sweat, decoding the correlation between changes in substance concentrations and physiological conditions. This work provides a unique and simplifying strategy for developing wearable sweat sensors for potential applications in health monitoring and disease diagnostics.
Collapse
Affiliation(s)
| | | | | | - Chen Ding
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, People’s Republic of China
| | | | | | | | | | - Aiping Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, People’s Republic of China
| | - Huaping Wu
- Authors to whom correspondence should be addressed: and
| |
Collapse
|