1
|
Jiang C, Fu J, Zhang H, Hua Y, Cao L, Ren J, Zhou M, Jiang F, Jiang X, Ling S. Self-Reinforcing Ionogel Bioadhesive Interface for Robust Integration and Monitoring of Bioelectronic Devices with Hard Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413028. [PMID: 39632650 DOI: 10.1002/adma.202413028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/16/2024] [Indexed: 12/07/2024]
Abstract
Integrating bioelectronic devices with hard tissues, such as bones and teeth, is essential for advancing diagnostic and therapeutic technologies. However, stable and durable adhesion in dynamic, moist environments remains challenging. Traditional bioadhesives often fail to maintain strong bonds, especially when interfacing with metal electrodes and hard tissues. This study introduces a self-reinforcing ionogel bioadhesive interface (IGBI) combining silk fibroin and calcium ions, designed to provide robust and conductive integration of bioelectronic devices with hard tissues. The IGBI exhibits strong adhesion (up to 186 J m-2) and undergoes mechanical self-reinforcement through a structural transition in silk fibroin under physiological conditions. In vivo experiments demonstrate the IGBI's effectiveness in repairing bone defects and reimplanting teeth, with the added capability of wireless, real-time monitoring of bone healing. This approach allows for continuous tracking of tissue regeneration without a second invasive surgery for device removal. The IGBI represents a significant advancement in bioelectronic integration, offering a durable and versatile solution for challenging environments. Such unique self-reinforcing properties make the IGBI a promising material for biomedical applications where traditional adhesives are insufficient.
Collapse
Affiliation(s)
- Chenghao Jiang
- Stomatological College of Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of General Dentistry Affiliated Hospital of Stomatology Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, 210029, China
| | - Junhao Fu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Hao Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Yingjie Hua
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No.639, Zhizaoju Road, Shanghai, 200011, China
| | - Leitao Cao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Mingliang Zhou
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No.639, Zhizaoju Road, Shanghai, 200011, China
| | - Fei Jiang
- Stomatological College of Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of General Dentistry Affiliated Hospital of Stomatology Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, 210029, China
| | - Xinquan Jiang
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No.639, Zhizaoju Road, Shanghai, 200011, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
2
|
Yang X, Wang X, Gao X, Guo X, Hou S, Shi J, Lv Q. What else should hemostatic materials do beyond hemostasis: A review. Mater Today Bio 2024; 25:101008. [PMID: 38495915 PMCID: PMC10940931 DOI: 10.1016/j.mtbio.2024.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/27/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Massive blood loss due to injury is the leading cause of prehospital deaths in disasters and emergencies. Hemostatic materials are used to realize rapid hemostasis and protect patients from death. Researchers have designed and developed a variety of hemostatic materials. However, in addition to their hemostatic effect, hemostatic materials must be endowed with additional functions to meet the practical application requirements in different scenarios. Here, strategies for modifications of hemostatic materials for use in different application scenarios are listed: effective positioning at the site of deep and narrow wounds to stop bleeding, resistance to high blood pressure and wound movement to maintain wound formation, rapid and easy removal from the wound without affecting further treatment after hemostasis is completed, and continued function when retained in the wound as a dressing (such as antibacterial, antiadhesion, tissue repair, etc.). The problems encountered in the practical use of hemostatic materials and the strategies and progress of researchers will be further discussed in this review. We hope to provide valuable references for the design of more comprehensive and practical hemostatic materials.
Collapse
Affiliation(s)
- Xinran Yang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| | - Xiudan Wang
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| | - Xing Gao
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Hospital, Tianjin 300072, China
| | - Xiaoqin Guo
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| | - Shike Hou
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| | - Jie Shi
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| | - Qi Lv
- Institution of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou 325026, China
| |
Collapse
|
3
|
Wang S, Zhang Y, Shi Y, He Q, Tan Q, Peng Z, Liu Y, Li D, Li X, Ke D, Wang J. Rhubarb charcoal-crosslinked chitosan/silk fibroin sponge scaffold with efficient hemostasis, inflammation, and angiogenesis for promoting diabetic wound healing. Int J Biol Macromol 2023; 253:126796. [PMID: 37689294 DOI: 10.1016/j.ijbiomac.2023.126796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Diabetic patients often experience long-term risks due to chronic inflammation and delayed re-epithelialization during impaired wound healing. Although the severity of this condition is well known, the treatment options for diabetic wounds are limited. Rhubarb charcoal, a well-known traditional Chinese medicine, has been used to treat skin wounds for thousands of years. We produced a chitosan/silk fibroin sponge scaffold loaded with natural carbonized rhubarb and crosslinked it by freeze-drying to create a highly efficient RCS/SF scaffold. Rhubarb carbon and carboxymethyl chitosan exhibit antibacterial activity and promote wound healing. Owing to its 3D porous structure, this scaffold is antibacterial and pro-angiogenic. It also possesses remarkable properties, such as excellent swelling and biocompatibility. The supportive effect of carbonized rhubarb on mouse fibroblast migration is mediated at the cellular/tissue level by increased skin neovascularization and re-epithelization. Compared to the control group, RCS/SF scaffolds promoted faster healing, increased neovascularization, enhanced collagen deposition, and re-epithelialization within two weeks. The scaffold's pro-healing properties and efficient release of carbonized rhubarb, with rapid hemostatic and good sterilization effects, make it an outstanding candidate for treating diabetic wounds and novel therapeutic interventions for diabetic ulcers.
Collapse
Affiliation(s)
- Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhang
- Department of General Practice, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yan Shi
- Department of Plastic, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qifeng He
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Qi Tan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ze Peng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuzhe Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Dong Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuezhi Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China; Chongqing University of Traditional Chinese Medicine, Chongqing 402760, China
| | - Dazhi Ke
- Department of General Practice, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China; Chongqing University of Traditional Chinese Medicine, Chongqing 402760, China.
| |
Collapse
|
4
|
Yao L, Lin C, Duan X, Ming X, Chen Z, Zhu H, Zhu S, Zhang Q. Autonomous underwater adhesion driven by water-induced interfacial rearrangement. Nat Commun 2023; 14:6563. [PMID: 37848441 PMCID: PMC10582181 DOI: 10.1038/s41467-023-42209-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Underwater adhesives receive extensive attention due to their wide applications in marine explorations and various related industries. However, current adhesives still suffer from excessive water absorption and lack of spontaneity. Herein, we report an autonomous underwater adhesive based on poly(2-hydroxyethyl methacrylate-co-benzyl methacrylate) amphiphilic polymeric matrix swollen by hydrophobic imidazolium ionic liquid. The as-prepared adhesive is tough and flexible, showing little to none instantaneous underwater adhesion onto the PET substrate, whereas its adhesion energy on the substrate can grow more than 5 times to 458 J·m-2 after 24 hours. More importantly, this process is entirely spontaneous, without any external pressing force. Our comprehensive studies based on experimental characterizations and molecular dynamic simulations confirm that such autonomous adhesion process is driven by water-induced rearrangement of the functional groups. It is believed that such material can provide insights into the development of next-generation smart adhesives.
Collapse
Affiliation(s)
- Le Yao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P.R. China
| | - Chengjiang Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.
| | - Xiaoqing Ming
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P.R. China
| | - Zhixuan Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P.R. China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P.R. China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P.R. China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P.R. China.
| |
Collapse
|
5
|
Erdi M, Sandler A, Kofinas P. Polymer nanomaterials for use as adjuvant surgical tools. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1889. [PMID: 37044114 PMCID: PMC10524211 DOI: 10.1002/wnan.1889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Materials employed in the treatment of conditions encountered in surgical and clinical practice frequently face barriers in translation to application. Shortcomings can be generalized through their reduced mechanical stability, difficulty in handling, and inability to conform or adhere to complex tissue surfaces. To overcome an amalgam of challenges, research has sought the utilization of polymer-derived nanomaterials deposited in various fashions and formulations to improve the application and outcomes of surgical and clinical interventions. Clinically prevalent applications include topical wound dressings, tissue adhesives, surgical sealants, hemostats, and adhesion barriers, all of which have displayed the potential to act as superior alternatives to current materials used in surgical procedures. In this review, emphasis will be placed not only on applications, but also on various design strategies employed in fabrication. This review is designed to provide a broad and thought-provoking understanding of nanomaterials as adjuvant tools for the assisted treatment of pathologies prevalent in surgery. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Metecan Erdi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Anthony Sandler
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Joseph E. Robert Jr. Center for Surgical Care, Children's National Medical Center, Washington, DC, USA
| | - Peter Kofinas
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
6
|
Li F, Mo J, Zhang Z, Shi SQ, Li J, Cao J, Wang Z. Achieving strong, stable, and durable underwater adhesives based on a simple and generic amino-acid-resembling design. MATERIALS HORIZONS 2023. [PMID: 37183590 DOI: 10.1039/d3mh00301a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Developing underwater adhesives is important in many applications. Despite extensive progress, achieving strong, stable, and durable underwater adhesion via a simple and effective way is still challenging, mainly due to the conflict between the interfacial and bulk properties. Here, we report a unique bio-inspired strategy to facilely construct superior underwater adhesives with desirable interfacial and bulk properties. For adhesive design, a hydrophilic backbone is utilized to quickly absorb water for effective dehydration, and a novel amino acid-resembling functional block is developed to provide versatile molecular interactions for high interfacial adhesion. Moreover, the conjunction of these two components enables the generation of abundant covalent crosslinks for robust bulk cohesion. Such a rational design allows the adhesive to present a boosted underwater adhesion (3.92 MPa to glass), remarkable durability (maintaining high strength after one month), and good stability in various harsh environments (pH, salt, high temperature, and organic solvents). This strategy is generic, allowing the derivation of more similar adhesive designs easily and triggering new thinking for designing bio-inspired adhesives and beyond.
Collapse
Affiliation(s)
- Feng Li
- MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Jiaying Mo
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China, Hong Kong Centre for Cerebro-Caradiovasular Health Engineering (COCHE), Hong Kong 999077, China
| | - Zhicheng Zhang
- MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Sheldon Q Shi
- Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76203, USA
| | - Jianzhang Li
- MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Jinfeng Cao
- MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
7
|
Wu Y, Li X, Sun Y, Tan X, Wang C, Wang Z, Ye L. Multiscale design of stiffening and ROS scavenging hydrogels for the augmentation of mandibular bone regeneration. Bioact Mater 2023; 20:111-125. [PMID: 35663335 PMCID: PMC9133584 DOI: 10.1016/j.bioactmat.2022.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Although biomimetic hydrogels play an essential role in guiding bone remodeling, reconstructing large bone defects is still a significant challenge since bioinspired gels often lack osteoconductive capacity, robust mechanical properties and suitable antioxidant ability for bone regeneration. To address these challenges, we first engineered molecular design of hydrogels (gelatin/polyethylene glycol diacrylate/2-(dimethylamino)ethyl methacrylate, GPEGD), where their mechanical properties were significantly enhanced via introducing trace amounts of additives (0.5 wt%). The novel hybrid hydrogels show high compressive strength (>700 kPa), stiff modulus (>170 kPa) and strong ROS-scavenging ability. Furthermore, to endow the GPEGD hydrogels excellent osteoinductions, novel biocompatible, antioxidant and BMP-2 loaded polydopamine/heparin nanoparticles (BPDAH) were developed for functionalization of the GPEGD gels (BPDAH-GPEGD). In vitro results indicate that the antioxidant BPDAH-GPEGD is able to deplete elevated ROS levels to protect cells viability against ROS damage. More importantly, the BPDAH-GPEGD hydrogels have good biocompatibility and promote the osteo differentiation of preosteoblasts and bone regenerations. At 4 and 8 weeks after implantation of the hydrogels in a mandibular bone defect, Micro-computed tomography and histology results show greater bone volume and enhancements in the quality and rate of bone regeneration in the BPDAH-GPEGD hydrogels. Thus, the multiscale design of stiffening and ROS scavenging hydrogels could serve as a promising material for bone regeneration applications. Trace additives of DMAEMA markedly enhanced the mechanical performances of the gelatin-based hydrogels through molecular induced multiple crosslinking structures. Molecular design strategy combined with bioactive nanocomposites have a synergistically effects on promoting ROS scavenging ability and osteoactivity of the biomimetic hydrogels.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenming Wang
- Corresponding author. West China School of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, China.
| | - Ling Ye
- Corresponding author. West China School of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Wuhou District, Chengdu, 610041, China.
| |
Collapse
|