1
|
Li Y, Liu M, Hu F, He F, Li X, Deng H, Du Y, Shi X. Horseradish Peroxidase-Triggered Polydopamine-Modified Chitosan Hydrogels for Electrically Programmed and Infrared-Decodable Dynamic Information Storage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:14147-14157. [PMID: 40408542 DOI: 10.1021/acs.langmuir.5c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
The exceptional multiple responsiveness of hydrogels has garnered significant attention for their potential in storing dynamic information. Self-erasing information observable by the naked eye provides an alternative method for data security. Herein, we report a polydopamine (PDA)-modified chitosan (CS) hydrogel that automatically reveals information without external stimuli. Information is embedded in a CS hydrogel containing horseradish peroxidase through an electrical writing process, creating localized high pH regions that trigger rapid enzymatic polymerization of dopamine (DA) into dark PDA. However, unwritten regions experience slower self-oxidation kinetics in air. This mismatched DA oxidation leads to information revelation and time-dependent erasure. The information lifetime can be precisely regulated by the number of electrical writing cycles and the magnitude of the electric current, enabling complex information decryption and allowing for the recognition of valid and invalid signals. These results offer valuable insights into fabricating and applying patterned hydrogels for information storage.
Collapse
Affiliation(s)
- Yuting Li
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Mengyi Liu
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Feng Hu
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Fangjiu He
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Xiaoyang Li
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Yumin Du
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| |
Collapse
|
2
|
Honciuc A, Honciuc M, Solonaru AM. Reversible Cu-Nanoparticle Formation in Soft Hydrogel Composites: Towards Write-Erase Displays and Fluorescence Detection. J Colloid Interface Sci 2024; 668:37-49. [PMID: 38669994 DOI: 10.1016/j.jcis.2024.04.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
In this study, we introduce a hydrogel-polymer microsphere (HPM) composite material constituted of PVA, glycerin, and polymer microspheres obtained from Pickering emulsions that are capable of adsorbing Cu2+ ions. The obtained HPM composite is soft, flexible, can be fully saturated with Cu2+ ions, and exhibits a reversible color transition from blue to black upon electrode contact or interaction with a reducing agent, due to in situ generation of copper nanoparticles (Cu-NPs). Because of the color contrast between the locally generated Cu-NPs and the background, the HPM can be used as substrate for stamping different shapes or writing text. Further, the surface can be erased by an acidic solution, which makes it interesting as flexible write-erase displays. A second feature of the HPM is that it can function as a fluorescence detector of cyanide ions. An HPM whose surface has been stamped with an electrode, upon contacting an aqueous solution containing cyanide ions, begins fluorescing a yellow-green light around the patterned area. The displayed luminescence is irreversible and is preserved even after HPM's drying or lyophilization. This work lays a foundational framework for future exploration of the HPM composites in various technological applications, for sensing, circuit printing, and flexible displays.
Collapse
Affiliation(s)
- Andrei Honciuc
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, Iasi, 700487, Romania.
| | - Mirela Honciuc
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, Iasi, 700487, Romania
| | - Ana-Maria Solonaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, Iasi, 700487, Romania
| |
Collapse
|
3
|
Zhang T, Wang W, Ju X, Liu Z, Pan D, Xie R, Chu L. A thermo-responsive hydrogel for body temperature-induced spontaneous information decryption and self-encryption. Chem Commun (Camb) 2024; 60:7156-7159. [PMID: 38912556 DOI: 10.1039/d4cc01349b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel, exhibiting an interesting phenomenon of an opaque-transparent-opaque transition in the successive processes of heating and cooling, is reported. It is fabricated by means of both the porogenic effect of hydroxypropyl cellulose and the cononsolvency effect of PNIPAM in a mixed solvent of dimethyl sulfoxide and water. After being mildly triggered by body temperature, the hydrogel is used to spontaneously decrypt the quick response code within 4 min and then autonomously encrypts the code again within 10 min at room temperature. The mechanism for the transient transparency of hydrogels during the quenching process has been elucidated.
Collapse
Affiliation(s)
- Tingying Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiaojie Ju
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Dawei Pan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Liangyin Chu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
4
|
Li Y, Yang C, Hu F, Hu H, Xu Y, Deng H, Du Y, Shi X. Dopamine-Modified Chitosan Patterning Hydrogel with Dynamic Information Storage Ability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21463-21471. [PMID: 38650081 DOI: 10.1021/acsami.3c18976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The storage of dynamic information in hydrogels has aroused considerable interest regarding the multiple responsiveness of soft matter. Herein, we propose an electrical writing methodology to prepare dopamine (DA)-modified chitosan hydrogels with a dynamic information storage ability. A pH-responsive chitosan hydrogel medium was patterned by cathodic writing to in situ generate OH- in the writing area, at which dopamine underwent an auto-oxidation reaction in the locally alkaline environment to generate a dark color. The patterned information on the hydrogel can be encoded simply by electrical signals. The speed of information retrieval is positively correlated with the charge transfer during the electrical writing process, and the hiding of information is negatively correlated with the environmental stimulus (i.e., dopamine concentration, pH value, etc.). To showcase the versatility of this medium for information storage and the precision of the pattern, a quick response (QR) code is electronically written on dopamine-modified chitosan hydrogel and can be recognized programmably by a standard mobile phone. The results show that electrical regulation is a novel means to program the information storage process of hydrogels, which inspires future research on structural and functional information storage using stimulus-responsive hydrogels.
Collapse
Affiliation(s)
- Yuting Li
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Chen Yang
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Feng Hu
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Hui Hu
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Yuncheng Xu
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Yumin Du
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| |
Collapse
|
5
|
Yang S, Luo Q, Guo C, Jiang J, Wang X, Dai J, Li D, He K, Xu Y, Yuan C, Luo W, Dai L. Multifunctional Organohydrogels for pH-Responsive Fluorescent and Electrostimulus Writing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37878837 DOI: 10.1021/acsami.3c12497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Hydrogels have attracted widespread attention in anticounterfeiting due to their unique physical/chemical properties and designability. However, hydrogels' poor mechanical properties and sluggish response to chemical stimuli pose challenges for their wide application. A fluorescent tough organohydrogel capable of freeform writing of information is reported in this work. By incorporation of the fluorescent monomer 7-methylacryloxy-4-methylcoumarin into the polyacrylamide network in a covalently cross-linked manner while intertwining with the carboxymethyl cellulose sodium network, a fluorescent tough organohydrogel with a dual-network structure is prepared. The organohydrogel shows acid-base-mediated adjustable fluorescence through the transformation of fluorescent monomers. Ion printing and electrical stimulation design achieved free information storage and encryption. In addition, the prepared organohydrogel has good antifreezing properties and can be encrypted and decrypted at subzero temperatures. The encrypted information in the organohydrogel can be read only after UV-light irradiation. These patterned fluorescent organohydrogels should find applications in protected message displays for improved information security.
Collapse
Affiliation(s)
- Siyu Yang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Qiuyan Luo
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Chuanluan Guo
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Jia Jiang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Xiaohong Wang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Juguo Dai
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Dongxu Li
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Kaibin He
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Yiting Xu
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Conghui Yuan
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Weiang Luo
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Lizong Dai
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Qi L, Wang S, Chen L, Yu L, Guo X, Chen M, Ouyang W, Shi X, Chen C. Bioinspired Multiscale Micro-/Nanofiber Network Design Enabling Extremely Compressible, Fatigue-Resistant, and Rapidly Shape-Recoverable Cryogels. ACS NANO 2023; 17:6317-6329. [PMID: 36944053 DOI: 10.1021/acsnano.2c10462] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cryogels with extreme mechanical properties such as ultrahigh compressibility, fatigue resistance, and rapid recovery are attractive in biomedical, environmental remediation, and energy storage applications, which, however, are difficult to achieve in man-made materials. Here, inspired by the multiscale macro-/microfiber network structure of spider web, we construct an ultraelastic chitosan cryogel with interconnected hybrid micro-/nanofibers (CMNF cryogels) via freeze-induced physicochemical cross-linking. Chitosan chains are directionally assembled into high-aspect-ratio microfibers and nanofibers under shear-flow induction, which are further assembled into an interconnected three-dimensional (3D) network structure with staggered microfibers and nanofibers. In this multiscale network, nanofibers connecting the microfibers improve the stability, while microfibers improve the elasticity of the CMNF cryogels through long-range interaction. The synergy of the two-scale fibers endows the CMNF cryogel with extraordinary mechanical properties in comparison to those assembled with single-scale fibers, including its ultrahigh ultimate strain (97% strain with 50 cycles), excellent fatigue resistance (3200 compressing-releasing cycles at 60% compression strain), and rapid water-triggered shape recovery (recovering in ∼1 s). Moreover, the fibrous CMNF cryogel shows excellent functionalization capability via the rapid assembly of nanoscale building blocks for flexible electronics and environmental remediation. Our work thereby demonstrates the potential of this bioinspired strategy for designing gel materials with extreme mechanical properties.
Collapse
Affiliation(s)
- Luhe Qi
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Sen Wang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Lu Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Le Yu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Xiaojia Guo
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Mingxiang Chen
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Wengen Ouyang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaowen Shi
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | - Chaoji Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| |
Collapse
|
7
|
Quan Z, Xue F, Li H, Chen Z, Zhu H, He H. Design of a biomimetic cellulose nanofibre-based double information encryption sensor for fingerprint imaging. Carbohydr Polym 2023; 302:120394. [PMID: 36604072 DOI: 10.1016/j.carbpol.2022.120394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/25/2022]
Abstract
The development of double encryption system enables information to switch reversibly between "False" and "True", which helps to ensure information security in the transmission process. Herein, a biomimetic cellulose nanofibre-based double information encryption sensor (CNF-DIES) with an excellent pH response and fluorescence colour-switching performance was prepared with fluorescein isothiocyanate and protoporphyrin IX modified acetylated cellulose nanofibres (ACNF) as the pH response switch and background, respectively. Interestingly, with the addition of cellulose, CNF-DIES can be regarded as both a dye and an ink binder, which can realize direct writing function. The fluorescein grafted to ACNF guaranteed the stability of writing and avoided the "coffee ring" phenomenon. The handwriting written by CNF-DIES processes excellent light/pH double encryption performance. Besides, the film prepared by CNF-DIES can realize high resolution fingerprint imaging. This work demonstrated a strategy for pH-responsive colour-tunable materials for sensors and double information encryption.
Collapse
Affiliation(s)
- Zongyan Quan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Fei Xue
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Haoyuan Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Zhiping Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| |
Collapse
|
8
|
Li M, Lu H, Wang X, Wang Z, Pi M, Cui W, Ran R. Regulable Mixed-Solvent-Induced Phase Separation in Hydrogels for Information Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205359. [PMID: 36333111 DOI: 10.1002/smll.202205359] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The rapid progress of information technology is accompanied by plenty of information embezzlement and forgery, but developing advanced encryption technologies to ensure information security remains challenging. Phase separation commonly leads to a dramatic change in the transmittance of hydrophilic polymer networks, which is a potential method for information security but is often neglected. Here, taking the polyacrylamide (PAAm) hydrogel system as a typical example, facilely adjustable information encryption and decryption via its regulable phase separation process in ethanol/water mixed solvent, are reported. By controlling the osmotic pressure of the external and internal environment, it is demonstrated that the diffusion coefficient during deswelling and reswelling, as well as the corresponding change of transmittance of the gel, can be well controlled. Relatively high osmotic pressure leads to rapid phase separation of the initial gel but slow phase remixing of the phase-separated gel, opening the opportunity of applying the gel as a reversible information encryption device. As proof-of-concept demonstrations, several stable and reversible information encryption and decryption systems by making use of the phase separation process of the gels are designed, which are expected to inspire the development of next-generation soft devices for information technology.
Collapse
Affiliation(s)
- Min Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Honglang Lu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaoyu Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhisen Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Menghan Pi
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wei Cui
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Rong Ran
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
9
|
Sun Y, Le X, Zhou S, Chen T. Recent Progress in Smart Polymeric Gel-Based Information Storage for Anti-Counterfeiting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201262. [PMID: 35686315 DOI: 10.1002/adma.202201262] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Information security protection has a tremendous impact on human life, social stability and national security, leading to the rapid development of anti-counterfeiting materials and related techniques. However, the traditional stored information on hard or dry media is often static and lacks functions, which makes it challenging to deal with increasing and powerful counterfeiting technologies. Modified intelligent polymeric gels exhibit color changes and shape morphing under external stimuli, which give them great potential for applications in information storage. This paper provides an overview of the latest progress in polymeric gel-based information storage materials in relation to counterfeiting. Following a brief introduction of anti-counterfeiting materials, the preparation methods for intelligent gels with adjustable colors (e.g., chemical colors and physical colors) and various encryption/decryption modes involving dimensions and diverse colors are outlined. Finally, the challenges and prospects for information storage and anti-counterfeiting based on smart gels are discussed.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxia Le
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyu Zhou
- St. Elizabeth Catholic High School, 238 Westmount Blvd, Thornhill, ON, L4J 7V9, Canada
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Yang C, Wang M, Wang W, Liu H, Deng H, Du Y, Shi X. Electrodeposition induced covalent cross-linking of chitosan for electrofabrication of hydrogel contact lenses. Carbohydr Polym 2022; 292:119678. [DOI: 10.1016/j.carbpol.2022.119678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
|
11
|
Patterning meets gels: Advances in engineering functional gels at micro/nanoscales for soft devices. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Jian Y, Yang C, Zhang J, Qi L, Shi X, Deng H, Du Y. One-step electrodeposition of Janus chitosan coating for metallic implants with anti-corrosion properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128498] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Wang Y, Chen Z, Li N, Zhang H, Wei J. Programmable photo-responsive self-healing hydrogels for optical information coding and encryption. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Zhou C, Zhao X, Xiong Y, Tang Y, Ma X, Tao Q, Sun C, Xu W. A review of etching methods of MXene and applications of MXene conductive hydrogels. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Yang C, Shi X, Deng H, Du Y. Antifatigue Hydration-Induced Polysaccharide Hydrogel Actuators Inspired by Crab Joint Wrinkles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6251-6260. [PMID: 35061354 DOI: 10.1021/acsami.1c24430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Joint wrinkles in animals facilitate frequent bending and contribute to the duration of the joint. Inspired by the morphology and function of joint wrinkles, we developed a bionic hydration-induced polymeric actuator with constructed wrinkles at the selected area. Specifically, we adopt electrical writing to create defined single and double cross-linking regions on chitosan (CS) hydrogel. The covalent cross-linking network was constructed by electrical writing-induced covalent cross-linking between CS chains and epichlorohydrin. Subsequent treatment of sodium dodecyl sulfate allows electrostatic cross-linking at the unwritten area with the simultaneous formation of surface wrinkles. The resulting single and double cross-linking hydrogel demonstrates spontaneous deformation behaviors by the influx and efflux of H2O to the electrostatic cross-linking domain under different ion concentrations. Importantly, the wrinkle structure endows the hydrogel with extraordinary antifatigue bending performance. By regulating the surface morphology and spatial cross-linking, we can design novel biomimetic polysaccharide hydrogel actuators with fascinating functions.
Collapse
Affiliation(s)
- Chen Yang
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Yumin Du
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| |
Collapse
|
16
|
Zhu X, Yang C, Jian Y, Deng H, Du Y, Shi X. Ion-responsive chitosan hydrogel actuator inspired by carrotwood seed pod. Carbohydr Polym 2022; 276:118759. [PMID: 34823783 DOI: 10.1016/j.carbpol.2021.118759] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022]
Abstract
Inspired by the gradient hygroscopic structure of carrotwood seed pod, patterned anisotropic structure was created in polysaccharide hydrogel by an anodic electrical writing process. Locally released Fe2+ was oxidized to Fe3+ and chelated with chitosan chains in the written area, resulting in a gradient structure in the hydrogel. The asymmetrical stress generated by the different swelling of the gradient structure enables the hydrogel to bend autonomously. The hydrogel shows opposite bending in deionized water and NaCl solution. The physicochemical properties of the hydrogel are characterized by tensile test, SEM, EDS, XRD, TGA, DTG and FT-IR. SEM and EDS show that the written hydrogel has a structural gradient and a concentration gradient of Fe3+ vertically. Moreover, anodic electrical writing increases the flexibility of chitosan hydrogel due to decreased crystallinity. This controllable electrical writing technique is convenient to create patterned anisotropic structure and provide a novel design concept for natural hydrogel actuators.
Collapse
Affiliation(s)
- Xinyi Zhu
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Chen Yang
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Yinghao Jian
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Yumin Du
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, China.
| |
Collapse
|