1
|
Yang Y, Jeon Y, Dong Z, Yang JKW, Haddadi Moghaddam M, Kim DS, Oh DK, Lee J, Hentschel M, Giessen H, Kang D, Kim G, Tanaka T, Zhao Y, Bürger J, Maier SA, Ren H, Jung W, Choi M, Bae G, Chen H, Jeon S, Kim J, Lee E, Kang H, Park Y, Du Nguyen D, Kim I, Cencillo-Abad P, Chanda D, Jing X, Liu N, Martynenko IV, Liedl T, Kwak Y, Nam JM, Park SM, Odom TW, Lee HE, Kim RM, Nam KT, Kwon H, Jeong HH, Fischer P, Yoon J, Kim SH, Shim S, Lee D, Pérez LA, Qi X, Mihi A, Keum H, Shim M, Kim S, Jang H, Jung YS, Rossner C, König TAF, Fery A, Li Z, Aydin K, Mirkin CA, Seong J, Jeon N, Xu Z, Gu T, Hu J, Kwon H, Jung H, Alijani H, Aharonovich I, Kim J, Rho J. Nanofabrication for Nanophotonics. ACS NANO 2025; 19:12491-12605. [PMID: 40152322 DOI: 10.1021/acsnano.4c10964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Nanofabrication, a pivotal technology at the intersection of nanoscale engineering and high-resolution patterning, has substantially advanced over recent decades. This technology enables the creation of nanopatterns on substrates crucial for developing nanophotonic devices and other applications in diverse fields including electronics and biosciences. Here, this mega-review comprehensively explores various facets of nanofabrication focusing on its application in nanophotonics. It delves into high-resolution techniques like focused ion beam and electron beam lithography, methods for 3D complex structure fabrication, scalable manufacturing approaches, and material compatibility considerations. Special attention is given to emerging trends such as the utilization of two-photon lithography for 3D structures and advanced materials like phase change substances and 2D materials with excitonic properties. By highlighting these advancements, the review aims to provide insights into the ongoing evolution of nanofabrication, encouraging further research and application in creating functional nanostructures. This work encapsulates critical developments and future perspectives, offering a detailed narrative on the state-of-the-art in nanofabrication tailored for both new researchers and seasoned experts in the field.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Youngsun Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhaogang Dong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Joel K W Yang
- Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Mahsa Haddadi Moghaddam
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Mario Hentschel
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Harald Giessen
- fourth Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart 70569, Germany
| | - Dohyun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Takuo Tanaka
- RIKEN Center for Advanced Photonics, Wako 351-0198, Japan
- Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8501, Japan
| | - Yang Zhao
- Department of Electrical and Computer Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Ludwig-Maximilians-Universität, Munich 80539, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
- Department of Physics, Imperial College London, London SW72AZ, United Kingdom
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Wooik Jung
- Department of Creative Convergence Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gwangmin Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Haomin Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunji Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunjung Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dang Du Nguyen
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pablo Cencillo-Abad
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
| | - Debashis Chanda
- NanoScience Technology Center, University of Central Florida, Florida 32826, United States
- Department of Physics, University of Central Florida, Florida 32816, United States
- The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Xinxin Jing
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Na Liu
- Second Physics Institute, University of Stuttgart Pfaffenwaldring 57, Stuttgart 70569, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart D-70569, Germany
| | - Irina V Martynenko
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS) Ludwig-Maxim8ilians-University, Munich 80539, Germany
| | - Yuna Kwak
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunah Kwon
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Medical Research, Heidelberg 69120, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg 69120, Germany
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Nano Biomedical Engineering (NanoBME), Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiwon Yoon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sangmin Shim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Dasol Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Luis A Pérez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Xiaoyu Qi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Agustin Mihi
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Bellaterra, 08193 Spain
| | - Hohyun Keum
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Department of Polymers, University of Chemistry and Technology Prague, Prague 6 166 28, Czech Republic
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
- Dresden Center for Intelligent Materials (DCIM), Technische Universität Dresden, Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e. V., Dresden 01069, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden 01069, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden 01069, Germany
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Mayland 20742, United States
| | - Koray Aydin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Nara Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Zhiyun Xu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tian Gu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juejun Hu
- Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyounghan Kwon
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Quantum Information, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojoong Jung
- Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hossein Alijani
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Naclerio A, Cheng P, Hus SM, Diulus JT, Checa M, Vlassiouk I, Fissell WH, Coupin M, Warner J, Collins L, Kolmakov A, Li AP, Kidambi PR. Scalable Bottom-Up Synthesis of Nanoporous Hexagonal Boron Nitride ( h-BN) for Large-Area Atomically Thin Ceramic Membranes. NANO LETTERS 2025; 25:3221-3232. [PMID: 39950681 PMCID: PMC11869279 DOI: 10.1021/acs.nanolett.4c05939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025]
Abstract
Nanopores embedded within monolayer hexagonal boron nitride (h-BN) offer possibilities of creating atomically thin ceramic membranes with unique combinations of high permeance (atomic thinness), high selectivity (via molecular sieving), increased thermal stability, and superior chemical resistance. However, fabricating size-selective nanopores in monolayer h-BN via scalable top-down processes remains nontrivial due to its chemical inertness, and characterizing nanopore size distribution over a large area remains extremely challenging. Here, we demonstrate a facile and scalable approach of exploiting the chemical vapor deposition (CVD) process temperature to enable direct incorporation of subnanometer/nanoscale pores into the monolayer h-BN lattice, in combination with manufacturing compatible polymer casting to fabricate centimeter-scale nanoporous atomically thin ceramic membranes. We leverage diffusive transport of analytes including size-selective Ficoll sieving to characterize subnanometer-scale and nanoscale defects that manifest as pores in centimeter-scale h-BN membranes, overcoming previous limitations in large-area characterization of nanoscale defects in h-BN. Our approach opens a new frontier to advance atomically thin membranes to 2D ceramic materials, such as h-BN via facile and direct formation of nanopores, for size-selective separations.
Collapse
Affiliation(s)
- Andrew
E. Naclerio
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Peifu Cheng
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Saban M. Hus
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - J. Trey Diulus
- Nanoscale
Device Characterization Division, PML, NIST, Gaithersburg, Maryland 20899, United States
| | - Marti Checa
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ivan Vlassiouk
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - William H. Fissell
- Department
of Medicine and Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Nanoscale Sciences and Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Matthew Coupin
- Walker
Department of Mechanical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Jamie Warner
- Walker
Department of Mechanical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Liam Collins
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Andrei Kolmakov
- Nanoscale
Device Characterization Division, PML, NIST, Gaithersburg, Maryland 20899, United States
| | - An-Ping Li
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Piran R. Kidambi
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt
Institute of Nanoscale Sciences and Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department
of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Walker
Department of Mechanical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Abbaspourmani A, Shivayogimath A, Petersen RS, Lyksborg-Andersen A, Hansen TW, Keller SS, Booth TJ. Patterning and nanoribbon formation in graphene by hot punching. NANOTECHNOLOGY 2025; 36:115301. [PMID: 39662030 DOI: 10.1088/1361-6528/ad9d4c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Large area graphene patterning is critical for applications. Current graphene patterning techniques, such as electron beam lithography and nano imprint lithography, are time consuming and can scale unfavorably with sample size. Resist-based masking and subsequent dry plasma etching can lead to high roughness edges with no alignment to the underlying graphene crystal orientations. In this study, we present hot punching as a novel and feasible method for patterning of chemical vapor deposition (CVD) graphene sheets supported by a polyvinylalcohol (PVA) layer. Additionally, we observe the effect of such hot punching on graphene supported by PVA via optical microscopy, Raman spectroscopy, AFM, and TEM, including wrinkling, strain and the formation of nanoribbons with crystallographically aligned and smooth edges due to fracturing. We present hot punching as a facile technique for the production of arrays of such nanoribbons.
Collapse
Affiliation(s)
- AmirAli Abbaspourmani
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Department of Physics (DTU Fysik), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Abhay Shivayogimath
- Department of Physics (DTU Fysik), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Center for Nanostructured Graphene (CNG), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Ritika S Petersen
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsted Plads, 2800 Kgs. Lyngby, Denmark
| | - Anton Lyksborg-Andersen
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Center for Nanostructured Graphene (CNG), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Thomas W Hansen
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Center for Nanostructured Graphene (CNG), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Stephan S Keller
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsted Plads, 2800 Kgs. Lyngby, Denmark
| | - Timothy J Booth
- Department of Physics (DTU Fysik), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Center for Nanostructured Graphene (CNG), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Luo B, Wang R, Zhao T, Li L, Chen Q, Wang P, Wang J, Han Q, Zhang Y, Zhang B, Li D. Local Strain-Dependent Etching Patterns of Chemical Vapor Deposited Molybdenum Disulfide. SMALL METHODS 2025; 9:e2400770. [PMID: 39420828 DOI: 10.1002/smtd.202400770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/07/2024] [Indexed: 10/19/2024]
Abstract
This study reveals a local strain-dependent etching behavior that enables the formation of distinguished etching patterns in differently strained chemical vapor deposited (CVD) 2D molybdenum disulfide (MoS2) monolayers. It is demonstrated that when the local tensile strain of CVD 2D MoS2 is as uniformly low as ɛ ≈ 0.33% or less, the oxidative etching pattern possesses conventional triangular etching pits (TEPs), while when the local tensile strain is as uniformly high as ɛ ≈ 0.55% or larger, the oxidative etching pattern consist of uniformly oriented hexagonal etching channels (HECs). More interestingly, when the CVD 2D MoS2 monolayer has heterogenous strain distribution from ɛ ≈ 0.55% (center region) to ɛ ≈ 0.33% (perimeter region), the oxidative etching pattern comprise of non-uniformly hexagonal-mixed-parallel etching channels (HPECs). The further characterization and analysis reveal the formation mechanism of such strain-dependent etching patterns is built on the local strain-related fractures propagation under oxidative etching, as well as the anisotropy fractures-based oxidative etching kinetics. This study may enhance the understanding of the relationship between etching and growth features of 2D TMDs, and paves the way to etching-nanostructured (or defect) engineering of 2D TMDs and other 2D materials for potential applications in electrocatalysis and optoelectronics.
Collapse
Affiliation(s)
- Birong Luo
- College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Rongnan Wang
- College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Tianxiang Zhao
- National Research Center for Optical Sensors/communications Integrated Networks, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Linfeng Li
- College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Qi Chen
- College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Pengcheng Wang
- College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Junjia Wang
- National Research Center for Optical Sensors/communications Integrated Networks, School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Qing Han
- College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Ying Zhang
- College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Bo Zhang
- College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Dejun Li
- College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, P. R. China
| |
Collapse
|
5
|
Randerson SA, Zotev PG, Hu X, Knight AJ, Wang Y, Nagarkar S, Hensman D, Wang Y, Tartakovskii AI. High Q Hybrid Mie-Plasmonic Resonances in van der Waals Nanoantennas on Gold Substrate. ACS NANO 2024; 18:16208-16221. [PMID: 38869002 PMCID: PMC11210342 DOI: 10.1021/acsnano.4c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Dielectric nanoresonators have been shown to circumvent the heavy optical losses associated with plasmonic devices; however, they suffer from less confined resonances. By constructing a hybrid system of both dielectric and metallic materials, one can retain low losses, while achieving stronger mode confinement. Here, we use a high refractive index multilayer transition-metal dichalcogenide WS2 exfoliated on gold to fabricate and optically characterize a hybrid nanoantenna-on-gold system. We experimentally observe a hybridization of Mie resonances, Fabry-Perot modes, and surface plasmon-polaritons launched from the nanoantennas into the substrate. We measure the experimental quality factors of hybridized Mie-plasmonic (MP) modes to be up to 33 times that of standard Mie resonances in the nanoantennas on silica. We then tune the nanoantenna geometries to observe signatures of a supercavity mode with a further increased Q factor of over 260 in experiment. We show that this quasi-bound state in the continuum results from strong coupling between a Mie resonance and Fabry-Perot-plasmonic mode in the vicinity of the higher-order anapole condition. We further simulate WS2 nanoantennas on gold with a 5 nm thick hBN spacer in between. By placing a dipole within this spacer, we calculate the overall light extraction enhancement of over 107, resulting from the strong, subwavelength confinement of the incident light, a Purcell factor of over 700, and high directivity of the emitted light of up to 50%. We thus show that multilayer TMDs can be used to realize simple-to-fabricate, hybrid dielectric-on-metal nanophotonic devices granting access to high-Q, strongly confined, MP resonances, along with a large enhancement for emitters in the TMD-gold gap.
Collapse
Affiliation(s)
- Sam A. Randerson
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Panaiot G. Zotev
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Xuerong Hu
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Alexander J. Knight
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Yadong Wang
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Sharada Nagarkar
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Dominic Hensman
- Department
of Physics and Astronomy, University of
Sheffield, Sheffield S3 7RH, U.K.
| | - Yue Wang
- Department
of Physics, School of Physics, Engineering and Technology, University of York, York YO10 5DD, U.K.
| | | |
Collapse
|
6
|
Chen CY, Moore SL, Maiti R, Ginsberg JS, Jadidi MM, Li B, Chae SH, Rajendran A, Patwardhan GN, Watanabe K, Taniguchi T, Hone J, Basov DN, Gaeta AL. Unzipping hBN with ultrashort mid-infrared pulses. SCIENCE ADVANCES 2024; 10:eadi3653. [PMID: 38691599 PMCID: PMC11062566 DOI: 10.1126/sciadv.adi3653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/27/2024] [Indexed: 05/03/2024]
Abstract
Manipulating the nanostructure of materials is critical for numerous applications in electronics, magnetics, and photonics. However, conventional methods such as lithography and laser writing require cleanroom facilities or leave residue. We describe an approach to creating atomically sharp line defects in hexagonal boron nitride (hBN) at room temperature by direct optical phonon excitation with a mid-infrared pulsed laser from free space. We term this phenomenon "unzipping" to describe the rapid formation and growth of a crack tens of nanometers wide from a point within the laser-driven region. Formation of these features is attributed to the large atomic displacement and high local bond strain produced by strongly driving the crystal at a natural resonance. This process occurs only via coherent phonon excitation and is highly sensitive to the relative orientation of the crystal axes and the laser polarization. Its cleanliness, directionality, and sharpness enable applications such as polariton cavities, phonon-wave coupling, and in situ flake cleaving.
Collapse
Affiliation(s)
- Cecilia Y. Chen
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Samuel L. Moore
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Rishi Maiti
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
- Department of Physics, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Jared S. Ginsberg
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - M. Mehdi Jadidi
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Baichang Li
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Sang Hoon Chae
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Anjaly Rajendran
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Gauri N. Patwardhan
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - D. N. Basov
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Alexander L. Gaeta
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| |
Collapse
|
7
|
Nonappa. Precision nanoengineering for functional self-assemblies across length scales. Chem Commun (Camb) 2023; 59:13800-13819. [PMID: 37902292 DOI: 10.1039/d3cc02205f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
As nanotechnology continues to push the boundaries across disciplines, there is an increasing need for engineering nanomaterials with atomic-level precision for self-assembly across length scales, i.e., from the nanoscale to the macroscale. Although molecular self-assembly allows atomic precision, extending it beyond certain length scales presents a challenge. Therefore, the attention has turned to size and shape-controlled metal nanoparticles as building blocks for multifunctional colloidal self-assemblies. However, traditionally, metal nanoparticles suffer from polydispersity, uncontrolled aggregation, and inhomogeneous ligand distribution, resulting in heterogeneous end products. In this feature article, I will discuss how virus capsids provide clues for designing subunit-based, precise, efficient, and error-free self-assembly of colloidal molecules. The atomically precise nanoscale proteinic subunits of capsids display rigidity (conformational and structural) and patchy distribution of interacting sites. Recent experimental evidence suggests that atomically precise noble metal nanoclusters display an anisotropic distribution of ligands and patchy ligand bundles. This enables symmetry breaking, consequently offering a facile route for two-dimensional colloidal crystals, bilayers, and elastic monolayer membranes. Furthermore, inter-nanocluster interactions mediated via the ligand functional groups are versatile, offering routes for discrete supracolloidal capsids, composite cages, toroids, and macroscopic hierarchically porous frameworks. Therefore, engineered nanoparticles with atomically precise structures have the potential to overcome the limitations of molecular self-assembly and large colloidal particles. Self-assembly allows the emergence of new optical properties, mechanical strength, photothermal stability, catalytic efficiency, quantum yield, and biological properties. The self-assembled structures allow reproducible optoelectronic properties, mechanical performance, and accurate sensing. More importantly, the intrinsic properties of individual nanoclusters are retained across length scales. The atomically precise nanoparticles offer enormous potential for next-generation functional materials, optoelectronics, precision sensors, and photonic devices.
Collapse
Affiliation(s)
- Nonappa
- Facutly of Engineering and Natural Sciences, Tampere University, FI-33720, Tampere, Finland.
| |
Collapse
|
8
|
Jones AJH, Gammelgaard L, Sauer MO, Biswas D, Koch RJ, Jozwiak C, Rotenberg E, Bostwick A, Watanabe K, Taniguchi T, Dean CR, Jauho AP, Bøggild P, Pedersen TG, Jessen BS, Ulstrup S. Nanoscale View of Engineered Massive Dirac Quasiparticles in Lithographic Superstructures. ACS NANO 2022; 16:19354-19362. [PMID: 36321616 DOI: 10.1021/acsnano.2c08929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Massive Dirac fermions are low-energy electronic excitations characterized by a hyperbolic band dispersion. They play a central role in several emerging physical phenomena such as topological phase transitions, anomalous Hall effects, and superconductivity. This work demonstrates that massive Dirac fermions can be controllably induced by lithographically patterning superstructures of nanoscale holes in a graphene device. Their band dispersion is systematically visualized using angle-resolved photoemission spectroscopy with nanoscale spatial resolution. A linear scaling of effective mass with feature sizes is reported, underlining the Dirac nature of the superstructures. In situ electrostatic doping dramatically enhances the effective hole mass and leads to the direct observation of an electronic band gap that results in a peak-to-peak band separation of 0.64 ± 0.03 eV, which is shown via first-principles calculations to be strongly renormalized by carrier-induced screening. The methodology demonstrates band structure engineering guided by directly viewing structurally and electrically tunable massive Dirac quasiparticles in lithographic superstructures at the nanoscale.
Collapse
Affiliation(s)
- Alfred J H Jones
- Department of Physics and Astronomy, Aarhus University, 8000Aarhus C, Denmark
| | - Lene Gammelgaard
- DTU Physics, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
- Center for Nanostructured Graphene, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
| | - Mikkel O Sauer
- Department of Materials and Production, Aalborg University, 9220Aalborg Øst, Denmark
- Department of Mathematical Science, Aalborg University, 9220Aalborg Øst, Denmark
- Center for Nanostructured Graphene (CNG), 9220Aalborg Øst, Denmark
| | - Deepnarayan Biswas
- Department of Physics and Astronomy, Aarhus University, 8000Aarhus C, Denmark
| | - Roland J Koch
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Chris Jozwiak
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Eli Rotenberg
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Aaron Bostwick
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba305-0044, Japan
| | - Cory R Dean
- Department of Physics, Columbia University, New York, New York10027, United States
| | - Antti-Pekka Jauho
- DTU Physics, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
- Center for Nanostructured Graphene, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
| | - Peter Bøggild
- DTU Physics, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
- Center for Nanostructured Graphene, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
| | - Thomas G Pedersen
- Department of Materials and Production, Aalborg University, 9220Aalborg Øst, Denmark
- Center for Nanostructured Graphene (CNG), 9220Aalborg Øst, Denmark
| | - Bjarke S Jessen
- Department of Physics, Columbia University, New York, New York10027, United States
| | - Søren Ulstrup
- Department of Physics and Astronomy, Aarhus University, 8000Aarhus C, Denmark
| |
Collapse
|
9
|
Establishment of a new horizontal casting device and evaluation system for characterizing the homogeneity of food soft matter solution. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Munkhbat B, Wróbel P, Antosiewicz TJ, Shegai TO. Optical Constants of Several Multilayer Transition Metal Dichalcogenides Measured by Spectroscopic Ellipsometry in the 300-1700 nm Range: High Index, Anisotropy, and Hyperbolicity. ACS PHOTONICS 2022; 9:2398-2407. [PMID: 35880067 PMCID: PMC9306003 DOI: 10.1021/acsphotonics.2c00433] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Transition metal dichalcogenides (TMDs) attract significant attention due to their remarkable optical and excitonic properties. It was understood already in the 1960s and recently rediscovered that many TMDs possess a high refractive index and optical anisotropy, which make them attractive for nanophotonic applications. However, accurate analysis and predictions of nanooptical phenomena require knowledge of dielectric constants along both in- and out-of-plane directions and over a broad spectral range, information that is often inaccessible or incomplete. Here, we present an experimental study of optical constants from several exfoliated TMD multilayers obtained using spectroscopic ellipsometry in the broad range of 300-1700 nm. The specific materials studied include semiconducting WS2, WSe2, MoS2, MoSe2, and MoTe2, as well as in-plane anisotropic ReS2 and WTe2 and metallic TaS2, TaSe2, and NbSe2. The extracted parameters demonstrate a high index (n up to ∼4.84 for MoTe2), significant anisotropy (n ∥ - n ⊥ ≈ 1.54 for MoTe2), and low absorption in the near-infrared region. Moreover, metallic TMDs show potential for combined plasmonic-dielectric behavior and hyperbolicity, as their plasma frequency occurs at around ∼1000-1300 nm depending on the material. The knowledge of optical constants of these materials opens new experimental and computational possibilities for further development of all-TMD nanophotonics.
Collapse
Affiliation(s)
- Battulga Munkhbat
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Department
of Photonics Engineering, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
| | - Piotr Wróbel
- Faculty
of Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland
| | - Tomasz J. Antosiewicz
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Faculty
of Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland
| | - Timur O. Shegai
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
11
|
Smith LW, Batey JO, Alexander-Webber JA, Hsieh YC, Fung SJ, Albrow-Owen T, Beere HE, Burton OJ, Hofmann S, Ritchie DA, Kelly M, Chen TM, Joyce HJ, Smith CG. Giant Magnetoresistance in a Chemical Vapor Deposition Graphene Constriction. ACS NANO 2022; 16:2833-2842. [PMID: 35109656 PMCID: PMC9098165 DOI: 10.1021/acsnano.1c09815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Magnetic field-driven insulating states in graphene are associated with samples of very high quality. Here, this state is shown to exist in monolayer graphene grown by chemical vapor deposition (CVD) and wet transferred on Al2O3 without encapsulation with hexagonal boron nitride (h-BN) or other specialized fabrication techniques associated with superior devices. Two-terminal measurements are performed at low temperature using a GaAs-based multiplexer. During high-throughput testing, insulating properties are found in a 10 μm long graphene device which is 10 μm wide at one contact with an ≈440 nm wide constriction at the other. The low magnetic field mobility is ≈6000 cm2 V-1 s-1. An energy gap induced by the magnetic field opens at charge neutrality, leading to diverging resistance and current switching on the order of 104 with DC bias voltage at an approximate electric field strength of ≈0.04 V μm-1 at high magnetic field. DC source-drain bias measurements show behavior associated with tunneling through a potential barrier and a transition between direct tunneling at low bias to Fowler-Nordheim tunneling at high bias from which the tunneling region is estimated to be on the order of ≈100 nm. Transport becomes activated with temperature from which the gap size is estimated to be 2.4 to 2.8 meV at B = 10 T. Results suggest that a local electronically high quality region exists within the constriction, which dominates transport at high B, causing the device to become insulating and act as a tunnel junction. The use of wet transfer fabrication techniques of CVD material without encapsulation with h-BN and the combination with multiplexing illustrates the convenience of these scalable and reasonably simple methods to find high quality devices for fundamental physics research and with functional properties.
Collapse
Affiliation(s)
- Luke W. Smith
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
- Department
of Physics, National Cheng Kung University, Tainan 701, Taiwan
| | - Jack O. Batey
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Jack A. Alexander-Webber
- Electrical
Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Yu-Chiang Hsieh
- Department
of Physics, National Cheng Kung University, Tainan 701, Taiwan
| | - Shin-Jr Fung
- Department
of Physics, National Cheng Kung University, Tainan 701, Taiwan
| | - Tom Albrow-Owen
- Electrical
Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Harvey E. Beere
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Oliver J. Burton
- Electrical
Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Stephan Hofmann
- Electrical
Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - David A. Ritchie
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Michael Kelly
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
- Electrical
Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Tse-Ming Chen
- Department
of Physics, National Cheng Kung University, Tainan 701, Taiwan
- Center
for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung University, Tainan 701, Taiwan
| | - Hannah J. Joyce
- Electrical
Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Charles G. Smith
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|