1
|
Zhang L, Wang X, Zhao J, Qi Y, Han K, Yu Y, Ma B, Ke Y, Niu G, Wang W. Harnessing Cross-strand π-π Interlocking for Synergistic Enhancement of Immune Checkpoint Blocking and Ferroptosis. NANO LETTERS 2024. [PMID: 39539148 DOI: 10.1021/acs.nanolett.4c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The dynamic nature of noncovalent bonds in peptide self-assembly allows for selective accommodation of guest molecules. However, it remains unclear how to harness coassembly to reinforce the host peptides and simultaneously improve the application defects of guest molecules. This study aims to achieve supramolecular synergy between the host and guest, further expanding the functional space of the hybrid nanostructures. Herein, we utilized the aromatic regions present in β-sheet peptides to accommodate aromatic molecules, forming long-range nanotubes (NQ40@AIF) through a unique 'cross-strand π-π interlocking'. This strategy not only stabilizes the coassembly effectively but also synergizes the biological functions of the host and guest molecules. Moreover, due to the chemical diversity of the coassembled NQ40@AIF, it exhibits advantages in tumor combination therapy, achieving effective synergy between ferroptosis and immune checkpoint blocking. This work provides a minimalistic strategy for constructing peptide nanostructures with complex functionalities.
Collapse
Affiliation(s)
- Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xin Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ying Qi
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Kai Han
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yao Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Bokai Ma
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, PR China
| | - Yubin Ke
- China Spallation Neutron Source, Dongguan 523803, PR China
| | - Guangle Niu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
2
|
Supianto M, Yoo DK, Hwang H, Oh HB, Jhung SH, Lee HJ. Linker-Preserved Iron Metal-Organic Framework-Based Lateral Flow Assay for Sensitive Transglutaminase 2 Detection in Urine Through Machine Learning-Assisted Colorimetric Analysis. ACS Sens 2024; 9:1321-1330. [PMID: 38471126 DOI: 10.1021/acssensors.3c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
A groundbreaking demonstration of the utilization of the metal-organic framework MIL-101(Fe) as an exceptionally perceptive visual label in colorimetric lateral flow assays (LFA) is described. This pioneering approach enables the precise identification of transglutaminase 2 (TGM2), a recognized biomarker for chronic kidney disease (CKD), in urine specimens, which offers a remarkably sensitive naked-eye detection mechanism. The surface of MIL-101(Fe) was modified with oxalyl chloride, adipoyl chloride, and poly(acrylic) acid (PAA); these not only improved the labeling material stability in a complex matrix but also achieved a systematic control in the detection limit of the TGM2 concentration using our LFA platform. The advanced LFA with the MIL-101(Fe)-PAA label can detect TGM2 concentrations down to 0.012, 0.009, and 0.010 nM in Tris-HCl buffer, urine, and desalted urine, respectively, which are approximately 55-fold lower than those for a conventional AuNP-based LFAs. Aside from rapid TGM2 detection (i.e., within 20 min), the performance of the MIL-101(Fe)-PAA-based LFA on reproducibility [coefficients of variation (CV) < 2.9%] and recovery (95.9-103.2%) along with storage stability within 25 days of observation (CV < 6.0%) shows an acceptable parameter range for quantitative analysis. A sophisticated sensing method grounded in machine learning principles was also developed, specifically aimed at precisely deducing the TGM2 concentration by analyzing immunoreaction sites. More importantly, our developed LFA offers potential for clinical measurement of TGM2 concentration in normal human urine and CKD patients' samples.
Collapse
Affiliation(s)
- Mulya Supianto
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea
| | - Dong Kyu Yoo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea
| | - Hagyeong Hwang
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea
| |
Collapse
|
3
|
Qu X, Nie B, Zeng Y, Sun C, Li W, Li G. A peptides-based biosensor with target-triggered charge-switchable property for simple and sensitive detection of Granzyme B. Biosens Bioelectron 2023; 242:115748. [PMID: 37847984 DOI: 10.1016/j.bios.2023.115748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Granzyme B (GrB) is a serine protease released by natural killer cells and cytotoxic T lymphocytes during immune responses, which not only plays a role in tumor diagnosis but also provides valuable guidance during tumor treatment. In this work, we have designed a charge-switching peptide to fabricate an electrochemical biosensor for quantitative analysis of GrB. Specifically, the designed zwitterionic peptide is in an electrically neutral state before activation, and a door lock structure (proline) is constructed by utilizing the selectivity of carboxypeptidase A (CPA) to the carboxy-terminus of the peptide chain. The door lock is opened when the target is present, allowing CPA to hydrolyze the peptide. At this time, the peptide will convert from neutral to positive, triggering the assembly of a positively charged peptide layer on the electrode surface, resulting in a signal change. Studies have shown that the biosensor has good analytical performance, with a detection range of 0.01 pM-8 pM and a detection limit as low as 3.5 fM. Moreover, the developed biosensor has been effectively applied to the analysis of clinical samples, demonstrating its ability to monitor tumor progression and treatment with clinical applications.
Collapse
Affiliation(s)
- Xinyu Qu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Beibei Nie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yujing Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
4
|
Xiao Y, Zhang T, Zhang H. Recent advances in the peptide-based biosensor designs. Colloids Surf B Biointerfaces 2023; 231:113559. [PMID: 37738870 DOI: 10.1016/j.colsurfb.2023.113559] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/09/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Biosensors have rapidly emerged as a high-sensitivity and convenient detection method. Among various types of biosensors, optical and electrochemical are the most commonly used. Conventionally, antibodies have been employed to ensure specific interaction between the transmission material and analytes. However, there has been increasing recognition of peptides as a promising recognition element for biosensor development in recent years. The use of peptides as recognition elements provides high level of specificity, sensitivity, and stability for the detection process. The combination of peptide designs and optical or electrochemical detection methods has significantly improved biosensor efficacy. These advancements present opportunities for developing biosensors with diverse functions that can be used to lay a strong scientific foundation for the development of personalized medicine and various other fields. This paper reviews the recent advancements in the development and application of peptide-based optical and electrochemical biosensors, as well as their prospects as a sensor type.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Ting Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
5
|
Guo Z, Zhu Y, Xu Y, Miao P. Bright Green-Emissive Carbon Nanodots for Sensing and Intracellular Imaging of Cu 2+ and Glutathione. ACS APPLIED BIO MATERIALS 2023; 6:3084-3088. [PMID: 37565741 DOI: 10.1021/acsabm.3c00522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Green-emissive carbon nanodots (CDs) with high quantum yield are prepared. The abundant functional groups on the surfaces of CDs can selectively interact with Cu2+. The formed cupric amine complexes induce significant fluorescence quenching. The "on-off" switching can be further adjusted to the fluorescence "on" mode by the introduction of glutathione (GSH), which hinders the interactions between CDs and Cu2+. Based on the fantastic optical behavior of CDs, highly sensitive detection of Cu2+ and GSH can be achieved. Intracellular imaging of the two targets is also validated.
Collapse
Affiliation(s)
- Zhenzhen Guo
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yulin Zhu
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuanyuan Xu
- Sanya Institute of Nanjing Agricultural University, MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
6
|
Deng D, Chang Y, Liu W, Ren M, Xia N, Hao Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. BIOSENSORS 2023; 13:773. [PMID: 37622859 PMCID: PMC10452798 DOI: 10.3390/bios13080773] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Over the past few decades, molecular self-assembly has witnessed tremendous progress in a variety of biosensing and biomedical applications. In particular, self-assembled nanostructures of small organic molecules and peptides with intriguing characteristics (e.g., structure tailoring, facile processability, and excellent biocompatibility) have shown outstanding potential in the development of various biosensors. In this review, we introduced the unique properties of self-assembled nanostructures with small organic molecules and peptides for biosensing applications. We first discussed the applications of such nanostructures in electrochemical biosensors as electrode supports for enzymes and cells and as signal labels with a large number of electroactive units for signal amplification. Secondly, the utilization of fluorescent nanomaterials by self-assembled dyes or peptides was introduced. Thereinto, typical examples based on target-responsive aggregation-induced emission and decomposition-induced fluorescent enhancement were discussed. Finally, the applications of self-assembled nanomaterials in the colorimetric assays were summarized. We also briefly addressed the challenges and future prospects of biosensors based on self-assembled nanostructures.
Collapse
Affiliation(s)
- Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenjing Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingwei Ren
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yuanqiang Hao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
7
|
Zhang X, Zhang L, Bie H, Xu J, Yuan Y, Jia L. Intelligent visual detection of OTC enabled by a multicolor fluorescence nanoprobe: Europium complex functionalized carbon dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122867. [PMID: 37216821 DOI: 10.1016/j.saa.2023.122867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/10/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
It is of great significance to realize ultra-sensitive and visual detection of oxytetracycline (OTC) residues, especially for public health and environmental safety. In this study, a multicolor fluorescence sensing platform (CDs-Cit-Eu) for OTC detection was constructed by using rare earth europium complex functionalized carbon dots (CDs). The blue-emitting CDs (λem = 450 nm) prepared by one-step hydrothermal method using nannochloropsis were not only the scaffold of Eu3+ ion coordination, but also the recognition unit of OTC. After adding OTC to the multicolor fluorescent sensor, the emission intensity of CDs decreased slowly, and the emission intensity of Eu3+ ions (λem = 617 nm) enhanced significantly, accompanying by a significant color change of the nanoprobe from blue to red. The detection limit of the probe for OTC was calculated to be 3.5 nM, manifesting ultra-high sensitivity towards OTC detection. In addition, OTC detection in real samples (honey, lake water, tap water) was successfully achieved. Moreover, a semi-hydrophobic luminescent film SA/PVA/CDs-Cit-Eu was also prepared for OTC detection. With the help of smartphone color recognition APP, real-time intelligent detection of OTC was realized.
Collapse
Affiliation(s)
- Xia Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China
| | - Lina Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China.
| | - Hongyan Bie
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China
| | - Yingqi Yuan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China.
| |
Collapse
|
8
|
Cao Y, Zhou L, Fang Z, Zou Z, Zhao J, Zuo X, Li G. Application of functional peptides in the electrochemical and optical biosensing of cancer biomarkers. Chem Commun (Camb) 2023; 59:3383-3398. [PMID: 36808189 DOI: 10.1039/d2cc06824a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Early screening and diagnosis are the most effective ways to prevent the occurrence and progression of cancers, thus many biosensing strategies have been developed to achieve economic, rapid, and effective detection of various cancer biomarkers. Recently, functional peptides have been gaining increasing attention in cancer-related biosensing due to their advantageous features of a simple structure, ease of synthesis and modification, high stability, and good biorecognition, self-assembly and antifouling capabilities. Functional peptides can not only act as recognition ligands or enzyme substrates for the selective identification of different cancer biomarkers but also function as interfacial materials or self-assembly units to improve the biosensing performances. In this review, we summarize the recent advances in functional peptide-based biosensing of cancer biomarkers according to the used techniques and the roles of peptides. Particular attention is focused on the use of electrochemical and optical techniques, both of which are the most commonly used techniques in the field of biosensing. The challenges and promising prospects of functional peptide-based biosensors in clinical diagnosis are also discussed.
Collapse
Affiliation(s)
- Yue Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Liang Zhou
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Zhikai Fang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Zihan Zou
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Genxi Li
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
9
|
Zhu J, Guo Z, Cui J, Miao P. Partial collapse of DNA tetrahedron for miRNA assay with duplex-specific nuclease-assisted amplification. Analyst 2023; 148:512-515. [PMID: 36648312 DOI: 10.1039/d2an01889f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We establish a facile electrochemical approach for detecting miRNA. Programmable DNA tetrahedron is designed using thiol groups for electrode modification, the amino group for the localization of electrochemical species and a hairpin structure that responds to target miRNA. In addition, duplex-specific nuclease-assisted amplification helps improve the sensitivity of this biosensor. The target-initiated partial collapse of the DNA tetrahedron event integrates recognition, electrode immobilization, signal recruitment and amplification. By measuring the sharp silver stripping peak, the highly sensitive detection of miRNA is achieved, which also performs satisfactorily challenging biological samples. This method is featured with simple operation, high sensitivity and practical utility, exhibiting great application potential in clinical diagnosis.
Collapse
Affiliation(s)
- Jinwen Zhu
- University of Science and Technology of China, Hefei 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Zhenzhen Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Jinjiang Cui
- University of Science and Technology of China, Hefei 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| |
Collapse
|
10
|
Ruan Y, Sohail M, Zhao J, Hu F, Li Y, Wang P, Zhang L. Applications of Material-Binding Peptides: A Review. ACS Biomater Sci Eng 2022; 8:4738-4750. [PMID: 36229413 DOI: 10.1021/acsbiomaterials.2c00651] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Material-binding peptides (MBPs) are functionalized adhesive materials consisting of a few to several dozen amino acids. This affinity between MBPs and materials is regulated by multiple interactions, including hydrogen bonding, electrostatic, hydrophobic interactions, and π-π stacking. They show selective binding and high affinity to a diverse range of inorganic and organic materials, such as silicon-based materials, metals, metal compounds, carbon materials, and polymers. They are used to improve the biocompatibility of materials, increase the efficiency of material synthesis, and guide the controlled synthesis of nanomaterials. In addition, these can be used for precise targeting of proteins by conjugating to target biomolecules. In this review, we summarize the main designs and applications of MBPs in recent years. The discussions focus on more efficient and functional peptides, including evolution and overall design of MBPs. We have also highlighted the recent applications of MBPs, such as functionalization of material surfaces, synthesis of nanomaterials, drug delivery, cancer therapy, and plastic degradation. Besides, we also discussed the development trend of MBPs. This interpretation will accelerate future investigations to bottleneck the drawbacks of available MBPs, promoting their commercial applications.
Collapse
Affiliation(s)
- Yongqiang Ruan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jindi Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Fanghui Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yunhan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Panlin Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Lihui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
11
|
An electrochemical biosensor for exosome detection based on covalent organic frameworks conjugated with DNA and horseradish peroxidase. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Zeng Y, Qu X, Nie B, Mu Z, Li C, Li G. An electrochemical biosensor based on electroactive peptide nanoprobes for the sensitive analysis of tumor cells. Biosens Bioelectron 2022; 215:114564. [PMID: 35853325 DOI: 10.1016/j.bios.2022.114564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
Peptides possess many appealing and desirable features, which have attracted increasing attention in the field of electrochemical biosensing. However, peptides hardly produce noticeable electronic signals in response to target binding events. In this work, amphipathic peptides FFFGGGGRGDS with both target recognition and self-assembly capabilities are designed to be co-assembled with the electroactive species ferrocenecarboxylic acid (FcCOOH). Furthermore, the resultant electroactive peptide nanoprobes (ePNPs) are applied for sensitive electrochemical analysis of tumor cells. Specifically, tumor cells are captured by the electrode modified with the corresponding DNA aptamers, and ePNPs can then selectively bind to integrin proteins on the cell surface, thereby accompanied by a remarkable increase of electrochemical signal. Taking the assay of MDA-MB-231 cells, the fabricated biosensor can detect cancer cells with a detection limit of 7 cells mL-1. Moreover, the ePNPs can act as a universal probe for the detection of different cell lines. Given the merits of easy synthesis, convenient operation, and favorable analytical performance, the proposed biosensor exhibits great potential in developing peptide-based electrochemical biosensing for clinical applications.
Collapse
Affiliation(s)
- Yujing Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Xinyu Qu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Beibei Nie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Zheying Mu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
13
|
Lu J, Wang M, Han Y, Deng Y, Zeng Y, Li C, Yang J, Li G. Functionalization of Covalent Organic Frameworks with DNA via Covalent Modification and the Application to Exosomes Detection. Anal Chem 2022; 94:5055-5061. [PMID: 35290034 DOI: 10.1021/acs.analchem.1c05222] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The functionalization of covalent organic frameworks (COFs) with biomacromolecules can extend their functions, which is the premise of their application in biomedical research. However, strategies to functionalize COFs with biomacromolecules, which can ensure the stability in complex medium and minimize the undesired effects, are still lacking. In this work, we have proposed a strategy to functionalize COFs with DNA by covalently linking DNA to the functional group on the COF surface through Cu(I)-catalyzed azide/alkyne cycloaddition (CuAAC) reaction. The as-prepared DNA-functionalized COFs (DNA-COFs) can exhibit good hybridization ability and cargo loading ability; thus, we have designed a DNA-COF-based nanoprobe and then fabricated an electrochemical biosensor for the detection of exosomes. In this design, the functionalization with DNA enables COFs to recognize and capture exosomes, and the encapsulation of a large number of methylene blue (MB) in COFs facilitates signal amplification, which can enhance the sensitivity of the biosensor. Moreover, by simply replacing the oligonucleotide sequences, the strategy proposed here can generally be used to build different DNA-COFs with diverse functions for broader biomedical applications.
Collapse
Affiliation(s)
- Jianyang Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Minghui Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Yiwei Han
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Ying Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Yujing Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.,Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
14
|
Feng Y, Liu G, La M, Liu L. Colorimetric and Electrochemical Methods for the Detection of SARS-CoV-2 Main Protease by Peptide-Triggered Assembly of Gold Nanoparticles. Molecules 2022; 27:molecules27030615. [PMID: 35163874 PMCID: PMC8840628 DOI: 10.3390/molecules27030615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) has been regarded as one of the ideal targets for the development of antiviral drugs. The currently used methods for the probing of Mpro activity and the screening of its inhibitors require the use of a double-labeled peptide substrate. In this work, we suggested that the label-free peptide substrate could induce the aggregation of AuNPs through the electrostatic interactions, and the cleavage of the peptide by the Mpro inhibited the aggregation of AuNPs. This fact allowed for the visual analysis of Mpro activity by observing the color change of the AuNPs suspension. Furthermore, the co-assembly of AuNPs and peptide was achieved on the peptide-covered electrode surface. Cleavage of the peptide substrate by the Mpro limited the formation of AuNPs/peptide assembles, thus allowing for the development of a simple and sensitive electrochemical method for Mpro detection in serum samples. The change of the electrochemical signal was easily monitored by electrochemical impedance spectroscopy (EIS). The detection limits of the colorimetric and electrochemical methods are 10 and 0.1 pM, respectively. This work should be valuable for the development of effective antiviral drugs and the design of novel optical and electrical biosensors.
Collapse
Affiliation(s)
- Yunxiao Feng
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, China;
| | - Gang Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450011, China
| | - Ming La
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, China;
- Correspondence: (M.L.); (L.L.)
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
- Correspondence: (M.L.); (L.L.)
| |
Collapse
|
15
|
Chang Y, Xia N, Huang Y, Sun Z, Liu L. In Situ Assembly of Nanomaterials and Molecules for the Signal Enhancement of Electrochemical Biosensors. NANOMATERIALS 2021; 11:nano11123307. [PMID: 34947656 PMCID: PMC8705329 DOI: 10.3390/nano11123307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
The physiochemical properties of nanomaterials have a close relationship with their status in solution. As a result of its better simplicity than that of pre-assembled aggregates, the in situ assembly of nanomaterials has been integrated into the design of electrochemical biosensors for the signal output and amplification. In this review, we highlight the significant progress in the in situ assembly of nanomaterials as the nanolabels for enhancing the performances of electrochemical biosensors. The works are discussed based on the difference in the interactions for the assembly of nanomaterials, including DNA hybridization, metal ion-ligand coordination, metal-thiol and boronate ester interactions, aptamer-target binding, electrostatic attraction, and streptavidin (SA)-biotin conjugate. We further expand the range of the assembly units from nanomaterials to small organic molecules and biomolecules, which endow the signal-amplified strategies with more potential applications.
Collapse
Affiliation(s)
| | | | | | | | - Lin Liu
- Correspondence: (Z.S.); (L.L.)
| |
Collapse
|
16
|
La Manna S, Di Natale C, Onesto V, Marasco D. Self-Assembling Peptides: From Design to Biomedical Applications. Int J Mol Sci 2021; 22:12662. [PMID: 34884467 PMCID: PMC8657556 DOI: 10.3390/ijms222312662] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Self-assembling peptides could be considered a novel class of agents able to harvest an array of micro/nanostructures that are highly attractive in the biomedical field. By modifying their amino acid composition, it is possible to mime several biological functions; when assembled in micro/nanostructures, they can be used for a variety of purposes such as tissue regeneration and engineering or drug delivery to improve drug release and/or stability and to reduce side effects. Other significant advantages of self-assembled peptides involve their biocompatibility and their ability to efficiently target molecular recognition sites. Due to their intrinsic characteristics, self-assembled peptide micro/nanostructures are capable to load both hydrophobic and hydrophilic drugs, and they are suitable to achieve a triggered drug delivery at disease sites by inserting in their structure's stimuli-responsive moieties. The focus of this review was to summarize the most recent and significant studies on self-assembled peptides with an emphasis on their application in the biomedical field.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Concetta Di Natale
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80, 80125 Napoli, Italy
| | - Valentina Onesto
- Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, CNR NANOTEC, via Monteroni, c/o Campus Ecotekne, 73100 Lecce, Italy;
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| |
Collapse
|