1
|
Li Y, Cao Y, Jia X, Jiang Y, Xue Z, Xu J. Inhibiting Emulative Oxygen Adsorption via Introducing Pt-Segregated Sites into the Pd Surface for Enhanced H 2 Sensing in Air. ACS Sens 2024; 9:5405-5413. [PMID: 39392711 DOI: 10.1021/acssensors.4c01622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Pd-modified metal sulfide gas sensors exhibit excellent hydrogen (H2) sensing activity through spillover effects. However, the emulative oxygen adsorption often occupies an exposed Pd surface and thus limits the effective Pd-H interaction, impeding the H2 sensing performance in air. Herein, we develop an edge-rich Pt-shell/Pd-core structure to adjust the selective adsorption between oxygen and hydrogen for effective H2 sensing in an air atmosphere. Detailedly, through accurately regulating the rate of Pt deposition onto the icosahedron Pd surface, an edge-rich Pt-shell/Pd-core structure can be first achieved. It has been found that marginal Pt aggregations can segregate the oxygen molecules around the Pt species and induce easier Pt-O bonding, further guiding accessible Pd surfaces for effective Pd-H interactions, which can be verified by 1H ssNMR, in-situ Raman, ex-situ XPS, and density functional theory analyses. The final ZnS/PdPt sensor exhibits an ultrasensitive response (8608 to 4% H2) and a wide detected range (0.5 ppm-4%) in air, exceeding most reported hydrogen sensors.
Collapse
Affiliation(s)
- Yurou Li
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yanfen Cao
- Jining Institute of Quality and Metrology Inspection, Jining 272000, P. R. China
| | - Xin Jia
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Jiang
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Zhenggang Xue
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
2
|
Liu C, Ding R, Yin X. Comprehensive Study on the Electrochemical Evolution, Reaction Kinetics, and Mass Transport at the Anion Exchange Ionomer-Pt Interface for Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51660-51668. [PMID: 39267578 DOI: 10.1021/acsami.4c10293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Understanding the structure evolution, kinetics, and mass transfer for the oxygen reduction reaction (ORR) at the ionomer-catalyst interface is fundamental for the development of anion exchange membrane fuel cells (AEMFCs). Herein, we investigate the structural evolution of ionomer-Pt interfaces during the activation process of polycrystalline Pt (poly-Pt) electrodes and their ORR kinetics and mass transfer characteristics at steady state. The results suggest the ionomer thickness as a critical factor in determining the Pt surface structure and the flux of the O2 diffusion, which in turn affect the subsequent kinetic and mass transfer of the ORR on ionomer-Pt electrode interfaces. Thicker ionomer film leads to a more severe evolution of electrochemical features during the activation process, likely caused by forming more less-active Pt clusters at the ionomer-Pt interface. Thus, the ORR kinetic activity at the steady state decreases with the increase in ionomer thickness. Concurrently, the thicker ionomer leads to a reduced diffusion flux of O2, culminating in a lower limiting current density for the ORR. Additionally, we calculated the diffusion coefficient and solubility of O2 within the FAA-3 alkaline ionomer film, with a comparative assessment against those in the proton exchange membrane (PEM). These findings offer valuable insights into the ionomer-Pt interface in AEMFCs and their effects on performance.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruimin Ding
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Xi Yin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| |
Collapse
|
3
|
Wei L, Fang N, Xue F, Liu S, Huang WH, Pao CW, Hu Z, Xu Y, Geng H, Huang X. Amorphous-crystalline RuTi nanosheets enhancing OH species adsorption for efficient hydrogen oxidation catalysis. Chem Sci 2024; 15:3928-3935. [PMID: 38487225 PMCID: PMC10935717 DOI: 10.1039/d3sc06705j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
Anion exchange membrane fuel cells are a potentially cost-effective energy conversion technology, however, the electrocatalyst for the anodic hydrogen oxidation reaction (HOR) suffers from sluggish kinetics under alkaline conditions. Herein, we report that Ru-based nanosheets with amorphous-crystalline heterointerfaces of Ru and Ti-doped RuO2 (a/c-Ru/Ti-RuO2) can serve as a highly efficient HOR catalyst with a mass activity of 4.16 A mgRu-1, which is 19.8-fold higher than that of commercial Pt/C. Detailed characterization studies show that abundant amorphous-crystalline heterointerfaces of a/c-Ru/Ti-RuO2 nanosheets provide oxygen vacancies and unsaturated coordination bonds for balancing adsorption of hydrogen and hydroxyl species on Ru active sites to elevate HOR activity. Moreover, Ti doping can facilitate CO oxidation, leading to enhanced strength to CO poisoning. This work provides a strategy for enhancing alkaline HOR performance over Ru-based catalysts with heteroatom and heterointerface dual-engineering, which will attract immediate interest in chemistry, materials science and beyond.
Collapse
Affiliation(s)
- Licheng Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Nan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Fei Xue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road Hsinchu 30076 Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road Hsinchu 30076 Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids Nothnitzer Strasse 40 Dresden 01187 Germany
| | - Yong Xu
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS) 398 Ruoshui Road Suzhou 215123 China
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|
4
|
Yu X, Tian H, Fu Z, Pei F, Peng L, Meng G, Kong F, Chen Y, Chen C, Chang Z, Cui X, Shi J. Strengthening the Hydrogen Spillover Effect via the Phase Transformation of W 18O 49 for Boosted Hydrogen Oxidation Reaction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Xu Yu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Han Tian
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Zhengqian Fu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Fenglai Pei
- Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co., Ltd., Shanghai 201805, P. R China
| | - Lingxin Peng
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ge Meng
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fantao Kong
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Yafeng Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Chang Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ziwei Chang
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Xiangzhi Cui
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Jianlin Shi
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Chen L, Liang X, Wang D, Yang Z, He CT, Zhao W, Pei J, Xue Y. Platinum-Ruthenium Single Atom Alloy as a Bifunctional Electrocatalyst toward Methanol and Hydrogen Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27814-27822. [PMID: 35694972 DOI: 10.1021/acsami.2c02905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The precise regulation for the structural properties of nanomaterials at the atomic scale is an effective strategy to develop high-performance catalysts. Herein, a facile dual-regulation approach was developed to successfully synthesize Ru1Ptn single atom alloy (SAA) with atomic Ru dispersed in Pt nanocrystals. High-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure demonstrated that Ru atoms were dispersed in Pt nanocrystals as single atoms. Impressively, the Ru1Ptn-SAA exhibited an ultrahigh specific activity (23.59 mA cm-2) and mass activity (2.805 mA/μg-PtRu) for methanol oxidation reaction (MOR) and exhibited excellent exchange current density activity (1.992 mA cm-2) and mass activity (4.71 mA/μg-PtRu) for hydrogen oxidation reaction (HOR). Density functional theory calculations revealed that the introduction of Ru atoms greatly reduced the reaction free energy for the decomposition of water molecules, which promoted the removal of CO* in the MOR process and adjusted the Gibbs free energy of hydrogen and hydroxyl adsorption to promote the HOR. Our work provided an effective idea for the development of high performance electrocatalysts.
Collapse
Affiliation(s)
- Ligang Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing 102209, China
| | - Xin Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zuobo Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Qingdao Chuangqi Xinneng Catalytic Technology Ltd. Co., Qingdao 266041, China
| | - Chun-Ting He
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Wei Zhao
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing 102209, China
| | - Jiajing Pei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanrong Xue
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Yang Y, Dai Q, Shi L, Liu Y, Isimjan TT, Yang X. Electronic Modulation of Pt Nanoparticles on Ni 3N-Mo 2C by Support-Induced Strategy for Accelerating Hydrogen Oxidation and Evolution. J Phys Chem Lett 2022; 13:2107-2116. [PMID: 35225609 DOI: 10.1021/acs.jpclett.2c00021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrochemical energy conversion and storage through hydrogen has revolutionized sustainable energy systems using fuel cells and electrolyzers. Regrettably, the sluggish alkaline hydrogen oxidation reaction (HOR) hampers advances in fuel cells. Herein, we report a Pt/Ni3N-Mo2C bifunctional electrocatalyst toward HOR and hydrogen evolution reaction (HER). The Pt/Ni3N-Mo2C exhibits remarkable HOR/HER performance in alkaline media. The mass activity at 50 mV and exchange current density of HOR are 5.1 and 1.5 times that of commercial Pt/C, respectively. Moreover, it possesses an impressive HER activity with an overpotential of 11 mV @ 10 mA cm-2, which is lower than that of Pt/C and most reported electrocatalysts under the same conditions. Density functional theory (DFT) calculations combined with experimental results reveal that Pt/Ni3N-Mo2C not only possesses an optimal balance between hydrogen binding energy (HBE) and OH- adsorption but also facilitates water adsorption and dissociation on the catalyst surface, which contribute to the excellent HOR/HER performance. Thus, this work may guide bifunctional HOR/HER catalyst design in the conversion and transport of energy.
Collapse
Affiliation(s)
- Yuting Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Qiumei Dai
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Luyan Shi
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yi Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|