1
|
Malik SB, Annanouch FE, Bittencourt C, Llobet E. Scalable WS 2-Graphene Hybrids for Ultralow NO 2 Concentration Detection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:31592-31603. [PMID: 40379260 PMCID: PMC12123571 DOI: 10.1021/acsami.5c03302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
This work presents a facile approach for fabricating hybrid heterostructures of tungsten disulfide (WS2), synthesized via atmospheric pressure chemical vapor deposition (APCVD) and commercial graphene. A simple airbrushing technique, with nitrogen (N2) as the carrier gas, was employed to fabricate the sensors. The morphological and structural characterizations of the hybrid material revealed a sheet-like synthesis of edge-enriched 2D WS2 decorated with multilayer graphene nanomaterial. The gas-sensing properties of the pristine and hybrid materials were evaluated for nitrogen dioxide (NO2) at various operating temperatures. The hybrid sensor with a WS2 to graphene ratio of 3:1 demonstrated exceptional sensitivity to ultralow NO2 concentrations (10 ppb) at a remarkably low operating temperature of 100 °C, outperforming both the graphene and WS2 counterparts. Additionally, the sensor's responses to CO, H2, C6H6, and NH3 were examined to assess its selectivity. The sensor was tested under different relative humidity conditions (RH at 25 °C; 25%, 50%, and 75%). The sensor response nearly doubled at RH = 50%, highlighting its potential for practical applications in selective NO2 detection. The sensor responses eventually reached saturation at 75% RH. In addition, the manuscript provides a detailed discussion of the NO2 gas sensing mechanism.
Collapse
Affiliation(s)
- Shuja Bashir Malik
- School
of Engineering, Universitat Rovira i Virgili,
MINOS, Avda. Països Catalans 26, Tarragona43007, Spain
- IU-RESCAT,
Research Institute in Sustainability, Climatic Change and Energy Transition, Universitat Rovira i Virgili, Joanot Martorell 15, Vila-seca43480, Spain
- TecnATox
- Centre for Environmental, Food and Toxicological Technology, Universitat Rovira i Virgili, Avda. Països Catalans 26, Tarragona43007, Spain
| | - Fatima Ezahra Annanouch
- School
of Engineering, Universitat Rovira i Virgili,
MINOS, Avda. Països Catalans 26, Tarragona43007, Spain
- IU-RESCAT,
Research Institute in Sustainability, Climatic Change and Energy Transition, Universitat Rovira i Virgili, Joanot Martorell 15, Vila-seca43480, Spain
- TecnATox
- Centre for Environmental, Food and Toxicological Technology, Universitat Rovira i Virgili, Avda. Països Catalans 26, Tarragona43007, Spain
| | - Carla Bittencourt
- Chimie
des Interactions Plasma-Surface (ChIPS), Research Institute for Materials
Science and Engineering, University of Mons, Mons7000, Belgium
| | - Eduard Llobet
- School
of Engineering, Universitat Rovira i Virgili,
MINOS, Avda. Països Catalans 26, Tarragona43007, Spain
- IU-RESCAT,
Research Institute in Sustainability, Climatic Change and Energy Transition, Universitat Rovira i Virgili, Joanot Martorell 15, Vila-seca43480, Spain
- TecnATox
- Centre for Environmental, Food and Toxicological Technology, Universitat Rovira i Virgili, Avda. Països Catalans 26, Tarragona43007, Spain
| |
Collapse
|
2
|
Zhang L, Gao Y, Feng Y, Mai Z, Wang J, Chang Y, Wang F, Li H, Paoprasert P, Lee YK, French PJ, Umar Siddiqui AM, Zhou G, Wang Y. Ferrocene-decorated graphene nanosheets built by edge-to-face π-π interaction for room temperature ppb-level NO sensing. Talanta 2025; 285:127365. [PMID: 39700718 DOI: 10.1016/j.talanta.2024.127365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
The development of materials toward ppb-level nitric oxide (NO) sensing at room temperature remains in high demand for the monitoring of respiratory inflammatory diseases. In order to find an iron-containing molecule without steric hindrance to combine with graphene for room temperature NO gas sensing, here a supramolecular assembly of ferrocene (Fc) and reduced graphene oxide (rGO) was designed and prepared for NO sensing. The assembly of Fc/rGO was characterized using FT-IR, TEM, and XPS measurements. The Fc/rGO-based sensors exhibited superior NO sensing properties at room temperature including high response (Ra/Rg = 1.73, 1 ppm), high selectivity against other exhaled gases, reliable repeatability and stability (less than 4 % decrease after 40 days). A practical limit of detection (LOD) of 200 ppb was achieved. The theoretical simulation demonstrates that ferrocene is assembled via π-π interaction with rGO in edge-to-face configuration which provides relatively lower energy than face-to-face configuration does for the whole assembly. It was first verified that the enhanced adsorption capacity and the charge transfer between NO and Fc/rGO would result in improvement of the assembly's sensitivity toward NO after ferrocene was assembled with graphene. This work provides a fresh approach of anchoring iron on graphene for gas sensing via supramolecular methods.
Collapse
Affiliation(s)
- Lulu Zhang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Yixun Gao
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China.
| | - Yancong Feng
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Zhijian Mai
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Jianqiang Wang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Yanwei Chang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Fengnan Wang
- Department of Thoracic Oncology, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510006, PR China
| | - Hao Li
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Peerasak Paoprasert
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12121, Thailand
| | - Yi-Kuen Lee
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region; Department of Electronic & Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region
| | - Paddy J French
- BE Laboratory, EWI, Delft University of Technology, Delft, 2628CD, the Netherlands
| | - Ahmad M Umar Siddiqui
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Yao Wang
- National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China.
| |
Collapse
|
3
|
Zhang L, Du J, Tang P, Zhao X, Hu C, Dong Y, Zhang X, Liu N, Wang B, Peng R, Zhang Y, Wu G. Regulation of PPy Growth States by Employing Porous Organic Polymers to Obtain Excellent Microwave Absorption Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406001. [PMID: 39263765 DOI: 10.1002/smll.202406001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/22/2024] [Indexed: 09/13/2024]
Abstract
Regulating the different growth states of polypyrrole (PPy) is a key strategy for obtaining PPy composites with high electromagnetic wave (EMW) absorption properties. This work finds that the growth states of PPy is regulated by controlling the amount of pyrrole added during the preparation of composites, so as to regulate the development of conductive networks to obtain excellent EMW absorption performance. The POP/PPy-200 composite achieves an effective absorption bandwidth (EAB) of 6.24 GHz (11.76-18.00 GHz) at a thickness of only 2.34 mm, covering 100% of the Ku band. The minimum reflection loss of -73.05 dB can be demonstrated at a thickness of only 2.29 mm, while at the same time showing an EAB of 5.96 GHz to meet the requirements of "thin", "light", "wide", and "strong". Such excellent EMW absorption performance is attributed to the conductive loss caused by the regulation of the growth states of PPy and the polarization loss caused by the heterostructure. This work also addresses the key challenge that porous organic polymers (POPs) cannot be applied to EMW absorption due to poor conductivity and providing new insights into the candidates for EMW absorbing materials.
Collapse
Affiliation(s)
- Liwen Zhang
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Jiawei Du
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Peng Tang
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Xueying Zhao
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Chuangwei Hu
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Yu Dong
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Xuyang Zhang
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Nana Liu
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Bo Wang
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Ruihui Peng
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
| | - Yaohong Zhang
- School of Physics, Northwest University, Xi'an, 710127, China
| | - Guohua Wu
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin, 150001, China
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui, 241000, China
| |
Collapse
|
4
|
Lv W, Yang J, Xu Q, Mehrez JAA, Shi J, Quan W, Luo H, Zeng M, Hu N, Wang T, Wei H, Yang Z. Wide-range and high-accuracy wireless sensor with self-humidity compensation for real-time ammonia monitoring. Nat Commun 2024; 15:6936. [PMID: 39138176 PMCID: PMC11322651 DOI: 10.1038/s41467-024-51279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Real-time and accurate biomarker detection is highly desired in point-of-care diagnosis, food freshness monitoring, and hazardous leakage warning. However, achieving such an objective with existing technologies is still challenging. Herein, we demonstrate a wireless inductor-capacitor (LC) chemical sensor based on platinum-doped partially deprotonated-polypyrrole (Pt-PPy+ and PPy0) for real-time and accurate ammonia (NH3) detection. With the chemically wide-range tunability of PPy in conductivity to modulate the impedance, the LC sensor exhibits an up-to-180% improvement in return loss (S11). The Pt-PPy+ and PPy0 shows the p-type semiconductor nature with greatly-manifested adsorption-charge transfer dynamics toward NH3, leading to an unprecedented NH3 sensing range. The S11 and frequency of the Pt-PPy+ and PPy0-based sensor exhibit discriminative response behaviors to humidity and NH3, enabling the without-external-calibration compensation and accurate NH3 detection. A portable system combining the proposed wireless chemical sensor and a handheld instrument is validated, which aids in rationalizing strategies for individuals toward various scenarios.
Collapse
Affiliation(s)
- Wen Lv
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Qingda Xu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jaafar Abdul-Aziz Mehrez
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Shi
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjing Quan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hanyu Luo
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Min Zeng
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Nantao Hu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Wang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wei
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Tu YH, Huang HY, Yang YH, de Smet LCPM, Hu CC. A highly stable full-polymer electrochemical deionization system: dopant engineering & mechanism study. MATERIALS HORIZONS 2024; 11:3792-3804. [PMID: 38946305 PMCID: PMC11318517 DOI: 10.1039/d4mh00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Electrochemical deionization (ECDI) has emerged as a promising technology for water treatment, with faradaic ECDI systems garnering significant attention due to their enhanced performance potential. This study focuses on the development of a highly stable and efficient, full-polymer (polypyrrole, PPy) ECDI system based on two key strategies. Firstly, dopant engineering, involving the design of dopants with a high charge/molecular weight (MW) ratio and structural complexity, facilitating their effective integration into the polymer backbone. This ensures sustained contribution of strong negative charges, enhancing system performance, while the bulky dopant structure promotes stability during extended operation cycles. Secondly, operating the system with well-balanced charges between deionization and concentration processes significantly reduces irreversible reactions on the polymer, thereby mitigating dopant leakage. Implementing these strategies, the PPy(PSS)//PPy(ClO4) (PSS: polystyrene sulfonate) system achieves a high salt removal capacity (SRC) of 48 mg g-1, an ultra-low energy consumption (EC) of 0.167 kW h kgNaCl-1, and remarkable stability, with 96% SRC retention after 104 cycles of operation. Additionally, this study provides a detailed degradation mechanism based on pre- and post-cycling analyses, offering valuable insights for the construction of highly stable ECDI systems with superior performance in water treatment applications.
Collapse
Affiliation(s)
- Yi-Heng Tu
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsin-Chu 300044, Taiwan.
- Advanced Interfaces & Materials, Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The Netherlands.
| | - Hung-Yi Huang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsin-Chu 300044, Taiwan.
| | - Yu-Hsiang Yang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsin-Chu 300044, Taiwan.
| | - Louis C P M de Smet
- Advanced Interfaces & Materials, Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The Netherlands.
| | - Chi-Chang Hu
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsin-Chu 300044, Taiwan.
| |
Collapse
|
6
|
Chen Y, Huang D, Liu L. Electroactive polylactic acid nanofiber multilayer membranes as "Green" flexible electrode for supercapacitor. Int J Biol Macromol 2024; 274:133309. [PMID: 38909727 DOI: 10.1016/j.ijbiomac.2024.133309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Against the backdrop of the post-COVID-19 era, the demand for masks has become increasingly steady, discarded masks have brought about new environmental problems due to the lack of effective means of disposal as well as recycling mechanisms. To solve this problem, we make secondary use of discarded polylactic acid (PLA) masks. The nanofiber multilayer membranes PLA/PDA/GO/PPy were synthesized by layer-by-layer self-assembly for flexible supercapacitors (SCs). The multiple coating on PLA significantly increases the capacitive performance. Optimization of the PLA/PDA/GO/PPy demonstrates capacitance up to 1331 mF cm-2. Symmetric aqueous SCs using PLA/PDA/GO/PPy electrodes show higher energy density than other literature-reported SCs based on nanofiber multilayer membranes. In addition, we also explored the effects of discarded PLA/PDA/GO/PPy on the growth of ryegrass and canola in the soil. The exceptional combination of remarkable electrochemical properties and excellent environmental friendliness makes the PLA membrane promising for supercapacitors.
Collapse
Affiliation(s)
- Yashi Chen
- Center for Computational Chemistry, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Lei Liu
- Center for Computational Chemistry, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
7
|
Lawaniya SD, Kumar S, Yu Y, Awasthi K. Nitrogen-doped carbon nano-onions/polypyrrole nanocomposite based low-cost flexible sensor for room temperature ammonia detection. Sci Rep 2024; 14:7904. [PMID: 38570517 PMCID: PMC10991286 DOI: 10.1038/s41598-024-57153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
One of the frontier research areas in the field of gas sensing is high-performance room temperature-based novel sensing materials, and new family of low-cost and eco-friendly carbon nanomaterials with a unique structure has attracted significant attention. In this work, we propose a novel low-cost flexible room temperature ammonia gas sensor based on nitrogen-doped carbon nano-onions/polypyrrole (NCNO-PPy) composite material mounted low-cost membrane substrate was synthesized by combining hydrothermal and in-situ chemical polymerization methods. The proposed flexible sensor revealed high sensing performance when employed as the sensing material for ammonia detection at room temperature. The NCNO-PPy ammonia sensor exhibited 17.32% response for 100 ppm ammonia concentration with a low response time of 26 s. The NCNO-PPy based flexible sensor displays high selectivity, good repeatability, and long-term durability with 1 ppm as the lower detection limit. The proposed flexible sensor also demonstrated remarkable mechanical robustness under extreme bending conditions, i.e., up to 90° bending angle and 500 bending cycles. This enhanced sensing performance can be related to the potential bonding and synergistic interaction between nitrogen-doped CNOs and PPy, the formation of defects from nitrogen doping, and the presence of high reactive sites on the surface of NCNO-PPy composites. Additionally, the computational study was performed on optimized NCNO-PPy nanocomposite for both with and without NH3 interaction. A deeper understanding of the sensing phenomena was proposed by the computation of several electronic characteristics, such as band gap, electron affinity, and ionization potential, for the optimized composite.
Collapse
Affiliation(s)
- Shiv Dutta Lawaniya
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India
| | - Sanjay Kumar
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India
| | - Yeontae Yu
- Division of Advanced Materials Engineering, Jeonbuk National University, 567, Baekje-Daero, Deokjin-Gu, Jeonju, 54896, South Korea
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| |
Collapse
|
8
|
Humayun M, Bououdina M, Usman M, Khan A, Luo W, Wang C. Designing State-of-the-Art Gas Sensors: From Fundamentals to Applications. CHEM REC 2024; 24:e202300350. [PMID: 38355899 DOI: 10.1002/tcr.202300350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/23/2023] [Indexed: 02/16/2024]
Abstract
Gas sensors are crucial in environmental monitoring, industrial safety, and medical diagnostics. Due to the rising demand for precise and reliable gas detection, there is a rising demand for cutting-edge gas sensors that possess exceptional sensitivity, selectivity, and stability. Due to their tunable electrical properties, high-density surface-active sites, and significant surface-to-volume ratio, nanomaterials have been extensively investigated in this regard. The traditional gas sensors utilize homogeneous material for sensing where the adsorbed surface oxygen species play a vital role in their sensing activity. However, their performance for selective gas sensing is still unsatisfactory because the employed high temperature leads to the poor stability. The heterostructures nanomaterials can easily tune sensing performance and their different energy band structures, work functions, charge carrier concentration and polarity, and interfacial band alignments can be precisely designed for high-performance selective gas sensing at low temperature. In this review article, we discuss in detail the fundamentals of semiconductor gas sensing along with their mechanisms. Further, we highlight the existed challenges in semiconductor gas sensing. In addition, we review the recent advancements in semiconductor gas sensor design for applications from different perspective. Finally, the conclusion and future perspectives for improvement of the gas sensing performance are discussed.
Collapse
Affiliation(s)
- Muhammad Humayun
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Abbas Khan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
- Department of Chemistry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Wei Luo
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| |
Collapse
|
9
|
Ge J, Cheng X, Rong LH, Capadona JR, Caldona EB, Advincula RC. 3D Temperature-Controlled Interchangeable Pattern for Size-Selective Nanoparticle Capture. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38422547 DOI: 10.1021/acsami.3c17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Patterned surfaces with distinct regularity and structured arrangements have attracted great interest due to their extensive promising applications. Although colloidal patterning has conventionally been used to create such surfaces, herein, we introduce a novel 3D patterned poly(N-isopropylacrylamide) (PNIPAM) surface, synthesized by using a combination of colloidal templating and surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) polymerization. In order to investigate the temperature-driven 3D morphological variations at a lower critical solution temperature (LCST) of ∼32 °C, multifaceted characterization techniques were employed. Atomic force microscopy confirmed the morphological transformations at 20 and 40 °C, while water contact angle measurements, upon heating, revealed distinct trends, offering insights into the correlation between surface wettability and topography adaptations. Moreover, quartz crystal microbalance with dissipation monitoring and electrochemical measurements were employed to detect the topographical adjustments of the unique hollow capsule structure within the LCST. Tests using different sizes of PSNPs shed light on the size-selective capture-release potential of the patterned PNIPAM, accentuating its biomimetic open-close behavior. Notably, our approach negates the necessity for expensive proteins, harnessing temperature adjustments to facilitate the noninvasive and efficient reversible capture and release of nanostructures. This advancement hopes to pave the way for future innovative cellular analysis platforms.
Collapse
Affiliation(s)
- Jin Ge
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiang Cheng
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Li-Han Rong
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Eugene B Caldona
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Rigoberto C Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Chemical and Biomolecular Engineering and Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
10
|
Casanova-Chafer J, Garcia-Aboal R, Llobet E, Atienzar P. Enhanced CO 2 Sensing by Oxygen Plasma-Treated Perovskite-Graphene Nanocomposites. ACS Sens 2024; 9:830-839. [PMID: 38320174 DOI: 10.1021/acssensors.3c02166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Carbon dioxide (CO2) is a major greenhouse gas responsible for global warming and climate change. The development of sensitive CO2 sensors is crucial for environmental and industrial applications. This paper presents a novel CO2 sensor based on perovskite nanocrystals immobilized on graphene and functionalized with oxygen plasma treatment. The impact of this post-treatment method was thoroughly investigated using various characterization techniques, including Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The detection of CO2 at parts per million (ppm) levels demonstrated that the hybrids subjected to 5 min of oxygen plasma treatment exhibited a 3-fold improvement in sensing performance compared to untreated layers. Consequently, the CO2 sensing capability of the oxygen-treated samples showed a limit of detection and limit of quantification of 6.9 and 22.9 ppm, respectively. Furthermore, the influence of ambient moisture on the CO2 sensing performance was also evaluated, revealing a significant effect of oxygen plasma treatment.
Collapse
Affiliation(s)
- Juan Casanova-Chafer
- Chimie des Interactions Plasma Surface, Université de Mons, Mons 7000, Belgium
- Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Rocio Garcia-Aboal
- Instituto de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Valencia 46022, Spain
| | - Eduard Llobet
- Universitat Rovira i Virgili, Tarragona 43007, Spain
- Research Institute in Sustainability, Climate Change and Energy Transition (IU-RESCAT), Vila-seca 43480, Spain
| | - Pedro Atienzar
- Instituto de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Valencia 46022, Spain
| |
Collapse
|
11
|
Du H, Zhang Z, Jiang X, Wang J, Yi W, Li X, Chu J. Enhancement of NO 2 Gas Sensing Properties of Polypyrrole by Polarization Doping with DBS: Experimental and DFT Studies. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37922403 DOI: 10.1021/acsami.3c12154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
A new technique of polarization doping was adopted to improve NO2 gas sensing properties of the polypyrrole (PPy) sensor. PPy nanosheets polarization doped with sodium dodecyl benzenesulfonate (SDBS) were synthesized by low-temperature polymerization. The semiagglomerated PPy nanosheets were well-dispersed and a large specific surface areas due to the introduction of dodecyl benzenesulfonate (DBS). The DBS doped PPy sensor shows excellent NO2 sensing performance. Polarization of sulfonate ions to PPy enhanced the adsorption ability of NO2 with the synergistic effect of NO2. The adsorption energy (-0.676 eV) and electron transfer (0.521 |e|) of PPy to NO2 increased greatly after doping. An unoccupied electron state is observed in the valence band electron structure of PPy/DBS after the adsorption of NO2 by calculations of Density Functional Theory (DFT). The intermolecular synergy between NO2 and PPy/DBS causes a strong polarization, resulting in a high polarization potential, which enhances the NO2 sensing performance of PPy sensor. It is of great significance to develop NO2 detection device based on PPy that works at room temperature.
Collapse
Affiliation(s)
- Haiying Du
- College of Mechanical and Electronic Engineering, Dalian Minzu University, Dalian 116600, P. R. China
| | - Zhaorui Zhang
- School of Mechanical Engineering, Dalian University of Technology, State Key Laboratory of High-performance Precision Manufacturing, Dalian 116024, P. R. China
| | - Xingang Jiang
- Laboratory of High-Pressure Physics and Material Science, School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Jing Wang
- College of Mechanical and Electronic Engineering, Dalian Minzu University, Dalian 116600, P. R. China
| | - Wencai Yi
- Laboratory of High-Pressure Physics and Material Science, School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiaogan Li
- School of Microelectronics, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Jinkui Chu
- School of Mechanical Engineering, Dalian University of Technology, State Key Laboratory of High-performance Precision Manufacturing, Dalian 116024, P. R. China
| |
Collapse
|
12
|
Jafer R, Alsufyani SA, Iqbal J, Ansari MO, Numan A, Bashir S, Hasan PMZ, Wageh S. Silver Decorated and Graphene Wrapped Polypyrrole@Ni(OH) 2 Quaternary Nanocomposite for High Performance Energy Storage Devices. Polymers (Basel) 2023; 15:polym15051267. [PMID: 36904508 PMCID: PMC10007114 DOI: 10.3390/polym15051267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
In this work, silver (Ag) anchored over graphene (GN) wrapped polypyrrole (PPy)@ nickel hydroxide (Ni(OH)2) nanocomposites were synthesized through a combination of oxidative polymerization and hydrothermal processes. The synthesized Ag/GN@PPy-Ni(OH)2 nanocomposites were characterized for their morphological characteristics by field emission scanning electron microscopy (FESEM), while the structural investigations were done by X-ray diffraction and X-ray photoelectron spectroscopy (XPS). The FESEM studies showed Ni(OH)2 flakes and silver particles attached over the surface of PPy globules, along with the presence of GN sheets and spherical silver particles. The structural analysis also showed the presence of constituents, i.e., Ag, Ni(OH)2, PPy, GN, and their interaction, therefore vouching that the synthesis protocol is efficacious. The electrochemical (EC) investigations were done in potassium hydroxide (1 M KOH) using a three electrode setup. The quaternary Ag/GN@PPy-Ni(OH)2 nanocomposite electrode showed the highest specific capacity of 237.25 C g-1. The highest electrochemical performance of the quaternary nanocomposite is associated with the synergistic/additional effect of PPy, Ni(OH)2, GN, and Ag. The assembled supercapattery with Ag/GN@PPy-Ni(OH)2 as a positive and activated carbon (AC) as a negative electrode displayed eminent energy density of 43.26 Wh kg-1 with the associated power density of 750.00 W kg-1 at a current density of 1.0 A g-1. The cyclic stability of the supercapattery (Ag/GN@PPy-Ni(OH)2//AC), comprising a battery-type electrode, displayed a high cyclic stability of 108.37% after 5500 cycles.
Collapse
Affiliation(s)
- Rashida Jafer
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (R.J.); (M.O.A.)
| | - Sarah A. Alsufyani
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Javed Iqbal
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Omaish Ansari
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (R.J.); (M.O.A.)
| | - Arshid Numan
- Graphene and Advanced 2D Materials Research Group, School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
| | - Shahid Bashir
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia
| | - P. M. Z. Hasan
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - S. Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Wang J, Xu S, Du H, Lv J, He W, Yin S, Wang Q, Wang L. Enhanced Electrochemical Properties of Graphene-based Screen-Printed Carbon Electrode by PPy modification: Experimental and DFT Investigations. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
14
|
Sarkar AN, Padhi S, Kumari S, Jagadevan S, Pal S. Facile Synthesis of Carbon Dot Deposited γ-FeOOH Nanosheet/Polypyrrole Composite: A Robust Photocatalyst for Degradation of Antibiotics under Sunlight Irradiation with Enhanced Antibacterial Activity. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Abanindra Nath Sarkar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad826004, India
| | - Satyajeet Padhi
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad826004, India
| | - Soni Kumari
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad826004, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad826004, India
| | - Sagar Pal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad826004, India
| |
Collapse
|
15
|
Casanova-Chafer J, Garcia-Aboal R, Atienzar P, Feliz M, Llobet E. Octahedral Molybdenum Iodide Clusters Supported on Graphene for Resistive and Optical Gas Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57122-57132. [PMID: 36511821 PMCID: PMC9801382 DOI: 10.1021/acsami.2c15716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2022] [Indexed: 06/15/2023]
Abstract
This paper reports for the first time a gas-sensitive nanohybrid based on octahedral molybdenum iodide clusters supported on graphene flakes (Mo6@Graphene). The possibility of integrating this material into two different transducing schemes for gas sensing is proposed since the nanomaterial changes both its electrical resistivity and optical properties when exposed to gases and at room temperature. Particularly, when implemented in a chemoresistive device, the Mo6@Graphene hybrid showed an outstanding sensing performance toward NO2, revealing a limit of quantification of about 10 ppb and excellent response repeatability (0.9% of relative error). While the Mo6@Graphene chemoresistor was almost insensitive to NH3, the use of an optical transduction scheme (changes in photoluminescence) provided an outstanding detection of NH3 even for a low loading of Mo6. Nevertheless, the photoluminescence was not affected by the presence of NO2. In addition, the hybrid material revealed high stability of its gas sensing properties over time and under ambient moisture. Computational chemistry calculations were performed to better understand these results, and plausible sensing mechanisms were presented accordingly. These results pave the way to develop a new generation of multi-parameter sensors in which electronic and optical interrogation techniques can be implemented simultaneously, advancing toward the realization of highly selective and orthogonal gas sensing.
Collapse
Affiliation(s)
- Juan Casanova-Chafer
- MINOS
Research Group, Department of Electronics Engineering, Universitat
Rovira i Virgili, Tarragona43007, Spain
| | - Rocio Garcia-Aboal
- Instituto
de Tecnología Química, Universitat
Politècnica de València - Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avd. de los Naranjos s/n, Valencia46022, Spain
| | - Pedro Atienzar
- Instituto
de Tecnología Química, Universitat
Politècnica de València - Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avd. de los Naranjos s/n, Valencia46022, Spain
| | - Marta Feliz
- Instituto
de Tecnología Química, Universitat
Politècnica de València - Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avd. de los Naranjos s/n, Valencia46022, Spain
| | - Eduard Llobet
- MINOS
Research Group, Department of Electronics Engineering, Universitat
Rovira i Virgili, Tarragona43007, Spain
| |
Collapse
|
16
|
M. Hizam SM, Al-Dhahebi AM, Mohamed Saheed MS. Recent Advances in Graphene-Based Nanocomposites for Ammonia Detection. Polymers (Basel) 2022; 14:5125. [PMID: 36501520 PMCID: PMC9739373 DOI: 10.3390/polym14235125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
The increasing demand to mitigate the alarming effects of the emission of ammonia (NH3) on human health and the environment has highlighted the growing attention to the design of reliable and effective sensing technologies using novel materials and unique nanocomposites with tunable functionalities. Among the state-of-the-art ammonia detection materials, graphene-based polymeric nanocomposites have gained significant attention. Despite the ever-increasing number of publications on graphene-based polymeric nanocomposites for ammonia detection, various understandings and information regarding the process, mechanisms, and new material components have not been fully explored. Therefore, this review summarises the recent progress of graphene-based polymeric nanocomposites for ammonia detection. A comprehensive discussion is provided on the various gas sensor designs, including chemiresistive, Quartz Crystal Microbalance (QCM), and Field-Effect Transistor (FET), as well as gas sensors utilising the graphene-based polymer nanocomposites, in addition to highlighting the pros and cons of graphene to enhance the performance of gas sensors. Moreover, the various techniques used to fabricate graphene-based nanocomposites and the numerous polymer electrolytes (e.g., conductive polymeric electrolytes), the ion transport models, and the fabrication and detection mechanisms of ammonia are critically addressed. Finally, a brief outlook on the significant progress, future opportunities, and challenges of graphene-based polymer nanocomposites for the application of ammonia detection are presented.
Collapse
Affiliation(s)
- Sara Maira M. Hizam
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Adel Mohammed Al-Dhahebi
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Mohamed Shuaib Mohamed Saheed
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
17
|
Kamalabadi M, Ghoorchian A, Derakhshandeh K, Gholyaf M, Ravan M. Design and Fabrication of a Gas Sensor Based on a Polypyrrole/Silver Nanoparticle Film for the Detection of Ammonia in Exhaled Breath of COVID-19 Patients Suffering from Acute Kidney Injury. Anal Chem 2022; 94:16290-16298. [DOI: 10.1021/acs.analchem.2c02760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mahdie Kamalabadi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Arash Ghoorchian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Katayoun Derakhshandeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Mahmoud Gholyaf
- Urology & Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Maryam Ravan
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| |
Collapse
|
18
|
Wilczewska P, Breczko J, Bobrowska DM, Wysocka-Żołopa M, Goclon J, Basa A, Winkler K. Enhancement of polypyrrole electrochemical performance with graphene quantum dots in polypyrrole nanoparticle/graphene quantum dot composites. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Behi S, Casanova-Chafer J, González E, Bohli N, Llobet E, Abdelghani A. Metal loaded nano-carbon gas sensor array for pollutant detection . NANOTECHNOLOGY 2022; 33:195501. [PMID: 35073524 DOI: 10.1088/1361-6528/ac4e43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Many research works report a sensitive detection of a wide variety of gas species. However, their in-lab detection is usually performed by using single gases and, therefore, selectivity often remains an unsolved issue. This paper reports a four-sensor array employing different nano-carbon sensitive layers (bare graphene, SnO2@Graphene, WO3@Graphene, and Au@CNTs). The different gas-sensitive films were characterised via several techniques such as FESEM, TEM, and Raman. First, an extensive study was performed to detect isolated NO2, CO2, and NH3molecules, unravelling the sensing mechanism at the operating temperatures applied. Besides, the effect of the ambient moisture was also evaluated. Afterwards, a model for target gas identification and concentration prediction was developed. Indeed, the sensor array was used in mixtures of NO2and CO2for studying the cross-sensitivity and developing a calibration model. As a result, the NO2detection with different background levels of CO2was achieved with anR2of 0.987 and an RMSE of about 22 ppb.
Collapse
Affiliation(s)
- Syrine Behi
- Carthage University, National Institute of Applied Science and Technology, Research Unit of Nanobiotechnology and Valorisation of Medicinal Phytoressources UR17ES22, Bp 676, 1080 Charguia CEDEX, Tunisia
| | - Juan Casanova-Chafer
- Department of Electronics Engineering, Universitat Rovira i Virgili, MINOS, E-43007 Tarragona, Spain
| | - Ernesto González
- Department of Electronics Engineering, Universitat Rovira i Virgili, MINOS, E-43007 Tarragona, Spain
| | - Nadra Bohli
- Carthage University, National Institute of Applied Science and Technology, Research Unit of Nanobiotechnology and Valorisation of Medicinal Phytoressources UR17ES22, Bp 676, 1080 Charguia CEDEX, Tunisia
| | - Eduard Llobet
- Department of Electronics Engineering, Universitat Rovira i Virgili, MINOS, E-43007 Tarragona, Spain
| | - Adnane Abdelghani
- Carthage University, National Institute of Applied Science and Technology, Research Unit of Nanobiotechnology and Valorisation of Medicinal Phytoressources UR17ES22, Bp 676, 1080 Charguia CEDEX, Tunisia
| |
Collapse
|
20
|
Chakraborty P, Ahamed ST, Mandal P, Mondal A, Banerjee D. Polypyrrole and a polypyrrole/nickel oxide composite – single-walled carbon nanotube enhanced photocatalytic activity under visible light. NEW J CHEM 2022. [DOI: 10.1039/d2nj02336a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel NiO/PPy/SWCNT composite for removal of organic dyes with an emphasis on the effect of photocatalytic charge carrier transport and photoluminescence properties.
Collapse
Affiliation(s)
- Prasenjit Chakraborty
- Department of Physics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Sk. Taheruddin Ahamed
- Department of Chemistry, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Pinaki Mandal
- Department of Physics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Anup Mondal
- Department of Chemistry, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| | - Dipali Banerjee
- Department of Physics, Indian Institute of Engineering Science & Technology, Shibpur, Howrah 711103, India
| |
Collapse
|