1
|
Cheng G, Kuan CY, Lou KW, Ho Y. Light-Responsive Materials in Droplet Manipulation for Biochemical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2313935. [PMID: 38379512 PMCID: PMC11733724 DOI: 10.1002/adma.202313935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Miniaturized droplets, characterized by well-controlled microenvironments and capability for parallel processing, have significantly advanced the studies on enzymatic evolution, molecular diagnostics, and single-cell analysis. However, manipulation of small-sized droplets, including moving, merging, and trapping of the targeted droplets for complex biochemical assays and subsequent analysis, is not trivial and remains technically demanding. Among various techniques, light-driven methods stand out as a promising candidate for droplet manipulation in a facile and flexible manner, given the features of contactless interaction, high spatiotemporal resolution, and biocompatibility. This review therefore compiles an in-depth discussion of the governing mechanisms underpinning light-driven droplet manipulation. Besides, light-responsive materials, representing the core of light-matter interaction and the key character converting light into different forms of energy, are particularly assessed in this review. Recent advancements in light-responsive materials and the most notable applications are comprehensively archived and evaluated. Continuous innovations and rational engineering of light-responsive materials are expected to propel the development of light-driven droplet manipulation, equip droplets with enhanced functionality, and broaden the applications of droplets for biochemical studies and routine biochemical investigations.
Collapse
Affiliation(s)
- Guangyao Cheng
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
| | - Chit Yau Kuan
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
| | - Kuan Wen Lou
- State Key Laboratory of Marine PollutionCity University of Hong KongHong Kong SAR999077China
| | - Yi‐Ping Ho
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
- State Key Laboratory of Marine PollutionCity University of Hong KongHong Kong SAR999077China
- Centre for Novel BiomaterialsThe Chinese University of Hong KongHong Kong SAR999077China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and GeneticsThe Chinese University of Hong KongHong Kong SAR999077China
- The Ministry of Education Key Laboratory of Regeneration MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| |
Collapse
|
2
|
Sebastián-Vicente C, Imbrock J, Laubrock S, Caballero-Calero O, García-Cabañes A, Carrascosa M. All-Optical Domain Inversion in LiNbO 3 Crystals by Visible Continuous-Wave Laser Irradiation. ACS PHOTONICS 2024; 11:2624-2636. [PMID: 39036060 PMCID: PMC11258989 DOI: 10.1021/acsphotonics.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024]
Abstract
LiNbO3 is a distinguished multifunctional material where ferroelectric domain engineering is of paramount importance. This degree of freedom of the spontaneous polarization remarkably enhances the applicability of LiNbO3, for instance, in photonics. In this work, we report the first method for all-optical domain inversion of LiNbO3 crystals using continuous-wave visible light. While we focus mainly on iron-doped LiNbO3, the applicability of the method is also showcased in undoped congruent LiNbO3. The technique is simple, cheap, and readily accessible. It relies on ubiquitous elements: a light source with low/moderate intensity, basic optics, and a conductive surrounding medium, e.g., water. Light-induced domain inversion is unequivocally demonstrated and characterized by combination of several experimental techniques: selective chemical etching, surface topography profilometry, pyroelectric trapping of charged microparticles, scanning electron microscopy, and 3D Čerenkov microscopy. The influence of light intensity, exposure time, laser spot size, and surrounding medium is thoroughly studied. To explain all-optical domain inversion, we propose a novel physical mechanism based on an anomalous interplay between the bulk photovoltaic effect and external electrostatic screening. Overall, our all-optical method offers straightforward implementation of LiNbO3 ferroelectric domain engineering, potentially sparking new research endeavors aimed at novel optoelectronic applications of photovoltaic LiNbO3 platforms.
Collapse
Affiliation(s)
- Carlos Sebastián-Vicente
- Departamento
de Física de Materiales, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Jörg Imbrock
- Institute
of Applied Physics, University of Münster, Corrensstr. 2, 48149 Münster, Germany
| | - Simon Laubrock
- Institute
of Applied Physics, University of Münster, Corrensstr. 2, 48149 Münster, Germany
| | - Olga Caballero-Calero
- Instituto
de Micro y Nanotecnología, IMN-CNM,
CSIC (CEI UAM+CSIC) Isaac Newton, 8, Tres Cantos, E-28760 Madrid, Spain
| | - Angel García-Cabañes
- Departamento
de Física de Materiales, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Mercedes Carrascosa
- Departamento
de Física de Materiales, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| |
Collapse
|
3
|
Yan J, Gao Z, Shi L, Wang M, Liu X, Li C, Huai Z, Wang C, Zhang L, Wang X, Yan W. Photovoltaic Rotation and Transportation of a Fragile Fluorescent Microrod Toward Assembling a Tunable Light-Source System. ACS NANO 2024; 18:18743-18757. [PMID: 38951720 DOI: 10.1021/acsnano.4c06418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Continuous rotation of a fragile, photosensitive microrod in a safe, flexible way remains challenging in spite of its importance to microelectro-mechanical systems. We propose a photovoltaic strategy to continuously rotate a fragile, fluorescent microrod on a LiNbO3/Fe (LN/Fe) substrate using a continuous wave visible (473 nm) laser beam with an ultralow power (few tens of μW) and a simple structure (Gaussian profile). This strategy does not require the laser spot to cover the entire microrod nor does it result in a sharp temperature rise on the microrod. Both experiments and simulation reveal that the strongest photovoltaic field generated beside the laser spot firmly traps one corner of the microrod and the axisymmetric photovoltaic field exerts an electrostatic torque on the microrod driving it to rotate continuously around the laser spot. The dependence of the rotation rate on the laser power indicates contributions from both deep and shallow photovoltaic centers. This rotation mode, combined with the transportation mode, enables the controllable movement of an individual microrod along any complex trajectory with any specific orientation. The tuning of the end-emitting spectrum and the photothermal cutting of the fluorescent microrod are also realized by properly configuring the laser illumination. By taking a microrod as the emitter and a polystyrene microsphere as the focusing lens, we demonstrate the photovoltaic assembly of a microscale light-source system with both spectrum and divergence-angle tunabilities, which are realized by adjusting the photoexcitation position along the microrod and the geometry relationship in the system, respectively.
Collapse
Affiliation(s)
- Jinghui Yan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zuoxuan Gao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Lihong Shi
- Department of Physics, Tianjin Chengjian University, Tianjin 300384, China
| | - Mengtong Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaohu Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chenyu Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zechao Huai
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Cheng Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Lina Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xuan Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Wenbo Yan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
4
|
Huang Y, Wen G, Fan Y, He M, Sun W, Tian X, Huang S. Magnetic-Actuated Jumping of Droplets on Superhydrophobic Grooved Surfaces: A Versatile Strategy for Three-Dimensional Droplet Transportation. ACS NANO 2024; 18:6359-6372. [PMID: 38363638 DOI: 10.1021/acsnano.3c11197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
On-demand droplet transportation is of great significance for numerous applications. Although various strategies have been developed for droplet transportation, out-of-surface three-dimensional (3D) transportation of droplets remains challenging. Here, a versatile droplet transportation strategy based on magnetic-actuated jumping (MAJ) of droplets on superhydrophobic grooved surfaces (SHGSs) is presented, which enables 3D, remote, and precise manipulation of droplets even in enclosed narrow spaces. To trigger MAJ, an electromagnetic field is utilized to deform the droplet on the SHGS with the aid of an attached magnetic particle, thereby the droplet acquires excess surface energy. When the electromagnetic field is quickly removed, the excess surface energy is partly converted into kinetic energy, allowing the droplet to jump atop the surface. Through high-speed imaging and numerical simulation, the working mechanism and size matching effect of MAJ are unveiled. It is found that the MAJ behavior can only be observed if the sizes of the droplets and the superhydrophobic grooves are matched, otherwise unwanted entrapment or pinch-off effects would lead to failure of MAJ. A regime diagram which serves as a guideline to design SHGSs for MAJ is proposed. The droplet transportation capacities of MAJ, including in-surface and out-of-surface directional transportation, climbing stairs, and crossing obstacles, are also demonstrated. With the ability to remotely manipulate droplets in enclosed narrow spaces without using any mechanical moving parts, MAJ can be used to design miniaturized fluidic platforms, which exhibit great potential for applications in bioassays, microfluidics, droplet-based switches, and microreactions.
Collapse
Affiliation(s)
- Yusheng Huang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Guifeng Wen
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Yue Fan
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuelin Tian
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| | - Shilin Huang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Gao Z, Yan J, Shi L, Liu X, Wang M, Li C, Huai Z, Wang C, Wang X, Zhang L, Yan W. Efficient Surfactant-Mediated Photovoltaic Manipulation of fL-Scale Aqueous Microdroplets for Diverse Optofluidic Applications on LiNbO 3 Platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304081. [PMID: 37526054 DOI: 10.1002/adma.202304081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/16/2023] [Indexed: 08/02/2023]
Abstract
The electrodeless biocompatible manipulation of femtoliter-scale aqueous microdroplets remains challenging. The appropriate isolation of electrostatic charges from femtoliter-scale aqueous microdroplets is crucial for electrodeless optoelectronic manipulation based on space-charge-density modulation. Here, surfactant-mediated photovoltaic manipulation is proposed, where the surfactant layers self-assembled at the water-oil and oil-Lithium niobate interfaces are employed to isolate photovoltaic charges. The reduced electrostatic attenuation, remarkable hydrophobicity, and strong electrical breakdown suppression of the surfactant layers enable the stable and swift manipulation of femtoliter-scale aqueous microdroplets using µW-level laser in oil media. By virtue of the surfactant-mediated photovoltaic manipulation, a controllable merging/touching/detaching switch of aqueous microdroplets by adjusting the laser illumination intensity and position is realized and the cascading biochemical operations and microreactions of aqueous microdroplets and microdroplet strings are demonstrated. To demonstrate its potential in photonic Micro-Electro-Mechanical-System assemblies, the end coupling of a focused-laser-beam into a ZnO microrod leveraging the refraction effect occurring at the water/oil interface is demonstrated. Moreover, because of the selective permeability of the droplet-interface-bilayer developed between the touching microdroplets, in situ adjustment of the size of the microdroplets and the fluorescent solute contained in the microdroplets are achieved, aiming at constructing multicomponent fluorescent microdroplets with tunable whispering-gallery-mode characteristics.
Collapse
Affiliation(s)
- Zuoxuan Gao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Jinghui Yan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Lihong Shi
- Department of Physics, Tianjin Chengjian University, Tianjin, 300384, China
| | - Xiaohu Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Mengtong Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Chenyu Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Zechao Huai
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Cheng Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Xuan Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Lina Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Wenbo Yan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
- Hebei Engineering Laboratory of Photoelectronic Functional Crystals School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
6
|
Koroyasu Y, Nguyen TV, Sasaguri S, Marzo A, Ezcurdia I, Nagata Y, Yamamoto T, Nomura N, Hoshi T, Ochiai Y, Fushimi T. Microfluidic platform using focused ultrasound passing through hydrophobic meshes with jump availability. PNAS NEXUS 2023; 2:pgad207. [PMID: 37404834 PMCID: PMC10317206 DOI: 10.1093/pnasnexus/pgad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023]
Abstract
Applications in chemistry, biology, medicine, and engineering require the large-scale manipulation of a wide range of chemicals, samples, and specimens. To achieve maximum efficiency, parallel control of microlitre droplets using automated techniques is essential. Electrowetting-on-dielectric (EWOD), which manipulates droplets using the imbalance of wetting on a substrate, is the most widely employed method. However, EWOD is limited in its capability to make droplets detach from the substrate (jumping), which hinders throughput and device integration. Here, we propose a novel microfluidic system based on focused ultrasound passing through a hydrophobic mesh with droplets resting on top. A phased array dynamically creates foci to manipulate droplets of up to 300 μL. This platform offers a jump height of up to 10 cm, a 27-fold improvement over conventional EWOD systems. In addition, droplets can be merged or split by pushing them against a hydrophobic knife. We demonstrate Suzuki-Miyaura cross-coupling using our platform, showing its potential for a wide range of chemical experiments. Biofouling in our system was lower than in conventional EWOD, demonstrating its high suitability for biological experiments. Focused ultrasound allows the manipulation of both solid and liquid targets. Our platform provides a foundation for the advancement of micro-robotics, additive manufacturing, and laboratory automation.
Collapse
Affiliation(s)
- Yusuke Koroyasu
- School of Informatics, College of Media Arts, Science and Technology, University of Tsukuba, Tsukuba, 305-8550 Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 305-8550 Ibaraki, Japan
| | - Thanh-Vinh Nguyen
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8564 Ibaraki, Japan
| | - Shun Sasaguri
- School of Informatics, College of Media Arts, Science and Technology, University of Tsukuba, Tsukuba, 305-8550 Ibaraki, Japan
| | - Asier Marzo
- UPNALab, Department of Mathematics and Computer Engineering, Public University of Navarra, Pamplona, 31006 Navarra, Spain
| | - Iñigo Ezcurdia
- UPNALab, Department of Mathematics and Computer Engineering, Public University of Navarra, Pamplona, 31006 Navarra, Spain
| | - Yuuya Nagata
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, 001-0021 Hokkaido, Japan
| | - Tatsuya Yamamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577 Ibaraki, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577 Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, 305-8577 Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, 305-8577 Ibaraki, Japan
| | - Takayuki Hoshi
- Pixie Dust Technologies, Inc., Chiyoda-ku, 101-0061 Tokyo, Japan
| | - Yoichi Ochiai
- Pixie Dust Technologies, Inc., Chiyoda-ku, 101-0061 Tokyo, Japan
- R&D Center for Digital Nature, University of Tsukuba, Tsukuba, 305-8550 Ibaraki, Japan
- Institute of Library, Information and Media Science, University of Tsukuba, Tsukuba, 305-8550 Ibaraki, Japan
| | | |
Collapse
|
7
|
Tang X, Song Q, Zhang Z, Bai Y, Zhang Y, Zhang Y, Liu Z, Yuan L. Light-induced microdroplet suspension and directional self-driving. OPTICS LETTERS 2023; 48:2591-2594. [PMID: 37186716 DOI: 10.1364/ol.488374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this Letter, we show stable suspension and directional manipulation of microdroplets on a liquid surface employing simple-mode fiber with a Gaussian beam at 1480-nm wavelength using the photothermal effect. The intensity of the light field generated by the single-mode fiber is used to generate droplets of different numbers and sizes. In addition, the effect of the heat generated at different heights from the liquid surface is discussed through numerical simulation. In this work, the optical fiber is not only free to move at any angle, solving the difficulty that a certain working distance is needed to generate microdroplets on free space, it can also allow the continuous generation and directional manipulation of multiple microdroplets, which is of tremendous scientific relevance and application value in promoting the development and cross-fertilization of life sciences and other interdisciplinary fields.
Collapse
|
8
|
Gao B, Cao X, Wang C, Gao Z, Liu X, Wang M, Yan J, Huai Z, Shi L, Yan W. Dielectrophoresis-electrophoresis transition during the photovoltaic manipulation of water microdroplets on LiNbO 3:Fe platform. OPTICS EXPRESS 2023; 31:16495-16507. [PMID: 37157727 DOI: 10.1364/oe.484006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The abrupt behaviors of microdroplets during the LN-based photovoltaic manipulation may cause the transient instability and even failure of the microfluidic manipulation. In this paper, we perform a systematical analysis on the responses of water microdroplets to laser illumination on both naked and PTFE-coated LN:Fe surface, and find that the abrupt repulsive behaviors of the microdroplets are due to the electrostatic transition from the dielectrophoresis (DEP) to electrophoresis (EP) mechanism. Charging of the water microdroplets through the Rayleigh jetting from electrified water/oil interface is suggested as the cause of the DEP-EP transition. Fitting the kinetic data of the microdroplets to the models describing the motion of the microdroplets under the photovoltaic field yields the charging amount depending on the substrate configuration (∼1.7 × 10-11 and 3.9 × 10-12 C on the naked and PTFE-coated LN:Fe substrates), and also reveals the dominance of the EP mechanism in the co-existence of the DEP and EP mechanisms. The outcome of this paper will be quite important to the practicalization of the photovoltaic manipulation in LN-based optofluidic chips.
Collapse
|
9
|
Allione M, Limongi T, Marini M, Torre B, Zhang P, Moretti M, Perozziello G, Candeloro P, Napione L, Pirri CF, Di Fabrizio E. Micro/Nanopatterned Superhydrophobic Surfaces Fabrication for Biomolecules and Biomaterials Manipulation and Analysis. MICROMACHINES 2021; 12:1501. [PMID: 34945349 PMCID: PMC8708205 DOI: 10.3390/mi12121501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 01/04/2023]
Abstract
Superhydrophobic surfaces display an extraordinary repulsion to water and water-based solutions. This effect emerges from the interplay of intrinsic hydrophobicity of the surface and its morphology. These surfaces have been established for a long time and have been studied for decades. The increasing interest in recent years has been focused towards applications in many different fields and, in particular, biomedical applications. In this paper, we review the progress achieved in the last years in the fabrication of regularly patterned superhydrophobic surfaces in many different materials and their exploitation for the manipulation and characterization of biomaterial, with particular emphasis on the issues affecting the yields of the fabrication processes and the quality of the manufactured devices.
Collapse
Affiliation(s)
- Marco Allione
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy;
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Tania Limongi
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Monica Marini
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Bruno Torre
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Peng Zhang
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (P.Z.); (M.M.)
| | - Manola Moretti
- Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (P.Z.); (M.M.)
| | - Gerardo Perozziello
- BioNEM Laboratory, Department of Experimental and Clinical Medicine, Campus S. Venuta, Magna Graecia University, Germaneto, Viale Europa, 88100 Catanzaro, Italy; (G.P.); (P.C.)
| | - Patrizio Candeloro
- BioNEM Laboratory, Department of Experimental and Clinical Medicine, Campus S. Venuta, Magna Graecia University, Germaneto, Viale Europa, 88100 Catanzaro, Italy; (G.P.); (P.C.)
| | - Lucia Napione
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Candido Fabrizio Pirri
- Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy;
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| | - Enzo Di Fabrizio
- Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (M.M.); (B.T.); (L.N.); (E.D.F.)
| |
Collapse
|