1
|
Duda M, Joshi P, Borodziuk A, Sobczak K, Sikora-Dobrowolska B, Maćkowski S, Dennis AM, Kłopotowski Ł. Multimodal Temperature Readout Boosts the Performance of CuInS 2/ZnS Quantum Dot Nanothermometers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60008-60017. [PMID: 39437320 PMCID: PMC11551904 DOI: 10.1021/acsami.4c14541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Fluorescent nanothermometers are positioned to revolutionize research into cell functions and provide strategies for early diagnostics. Fluorescent nanostructures hold particular promise to fulfill this potential if nontoxic, stable varieties allowing for precise temperature measurement with high thermal sensitivities can be fabricated. In this work, we investigate the performance of micelle-encapsulated CuInS2/ZnS core/shell colloidal quantum dots (QDs) as fluorescent nanothermometers. We demonstrate four temperature readout modes, which are based on variations in the photoluminescence intensity, energy, and lifetime and on a specific ratio of excitation efficiencies. We further leverage this multimodal readout to construct a fifth, multiparametric thermometer calibration based on the multiple linear regression (MLR) model. We show that the MLR approach boosts the thermometer sensitivity by up to 7-fold while reducing the readout error by about a factor of 3. As a result, our QDs offer the highest sensitivities among semiconducting QDs emitting in the first biological window. The obtained results indicate that CuInS2/ZnS QDs are excellent candidates for intracellular in vivo thermometry and provide guidelines for further optimization of their performance.
Collapse
Affiliation(s)
- Magdalena Duda
- Institute
of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Pushkar Joshi
- Institute
of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Anna Borodziuk
- Institute
of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
| | - Kamil Sobczak
- University
of Warsaw Biological and Chemical Research Centre, 02-089 Warsaw, Poland
| | | | - Sebastian Maćkowski
- Institute
of Physics, Faculty of Physics, Nicolaus
Copernicus University, Astronomy and Informatics, 87-100 Toruń, Poland
| | - Allison M. Dennis
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
2
|
Harrington B, Ye Z, Signor L, Pickel AD. Luminescence Thermometry Beyond the Biological Realm. ACS NANOSCIENCE AU 2024; 4:30-61. [PMID: 38406316 PMCID: PMC10885336 DOI: 10.1021/acsnanoscienceau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
As the field of luminescence thermometry has matured, practical applications of luminescence thermometry techniques have grown in both frequency and scope. Due to the biocompatibility of most luminescent thermometers, many of these applications fall within the realm of biology. However, luminescence thermometry is increasingly employed beyond the biological realm, with expanding applications in areas such as thermal characterization of microelectronics, catalysis, and plasmonics. Here, we review the motivations, methodologies, and advances linked to nonbiological applications of luminescence thermometry. We begin with a brief overview of luminescence thermometry probes and techniques, focusing on those most commonly used for nonbiological applications. We then address measurement capabilities that are particularly relevant for these applications and provide a detailed survey of results across various application categories. Throughout the review, we highlight measurement challenges and requirements that are distinct from those of biological applications. Finally, we discuss emerging areas and future directions that present opportunities for continued research.
Collapse
Affiliation(s)
- Benjamin Harrington
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Ziyang Ye
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Laura Signor
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Andrea D. Pickel
- Department
of Mechanical Engineering and Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
3
|
Ryszczyńska S, Martín IR, Grzyb T. Near-infrared optical nanothermometry via upconversion of Ho 3+-sensitized nanoparticles. Sci Rep 2023; 13:14819. [PMID: 37684334 PMCID: PMC10491596 DOI: 10.1038/s41598-023-42034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023] Open
Abstract
Recently, materials revealing the upconversion (UC) phenomenon, which is a conversion of low-energy photons to higher-energy ones, have attracted considerable attention in luminescence thermometry due to the possibility of precise and remote optical thermal sensing. The most widely studied type of luminescent thermometry uses a ratiometric approach based on changes in the UC luminescence intensity, mainly of lanthanide ions' thermally coupled energy levels. In this work, NaYF4:Ho3+@NaYF4, and NaYF4:Ho3+, Er3+@NaYF4 nanoparticles (NPs) were synthesized by the controlled reaction in oleic acid and octadecene at 573 K. The obtained nanoparticles had hexagonal structures, oval shapes, and average sizes of 22.5 ± 2.2 nm and 22.2 ± 2.0 nm, respectively. The spectroscopic properties of the products were investigated by measurements of the UC emission under 1151 nm laser excitation in the temperature range between 295 to 378 K. The sample doped with Ho3+ and Er3+ ions showed unique behavior of enhancing emission intensity with the temperature. The relative sensitivity determined for the NPs containing Ho3+ and Er3+ ions, reached the maximum value of 1.80%/K at 378 K. Here, we prove that the NaYF4:Ho3+, Er3+@NaYF4 system presents unique and excellent optical temperature sensing properties based on the luminescence intensity ratios of the near-infrared bands of both Ho3+ and Er3+ ions.
Collapse
Affiliation(s)
- Sylwia Ryszczyńska
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Wszechnicy Piastowskiej 3, 61-614, Poznan, Poland
| | - Inocencio R Martín
- Departamento de Física, IMN, Universidad de La Laguna, Apdo. 456, 38200, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland.
| |
Collapse
|
4
|
Bourda L, Kaczmarek AM, Peng M, Mohanty S, Rijckaert H, Van Der Voort P, Van Hecke K. Turning 3D Covalent Organic Frameworks into Luminescent Ratiometric Temperature Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37696-37705. [PMID: 37498184 DOI: 10.1021/acsami.3c07544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
In this study, we report hybrid crystalline lanthanide-containing 3D covalent organic framework (Ln@3D COF) materials that are suitable for temperature sensing applications. Different routes to obtain these hybrid materials were tested and compared for material quality and thermometric properties. In the first approach, a bipyridine-containing 3D COF (Bipy COF) was grafted with a range of visible emitting lanthanide (Eu3+, Tb3+, Dy3+, and Eu3+/Tb3+) β-diketonate complexes. In the second approach, a novel nanocomposite material was prepared by embedding NaYF4:Er,Yb nanoparticles on the surface of a nonfunctionalized 3D COF (COF-300). To the best of our knowledge, the luminescent materials developed here are the first 3D COFs to be tested as ratiometric temperature sensors. In fact, for the Bipy COF, two different types of thermometers were tested (the Eu3+/Tb3+ system and a rare Dy3+ system), with both showing excellent temperature sensing properties. The reported NaYF4:Er,Yb/COF-300 nanocomposite material combines upconverting nanoparticles with 3D COFs, similar to previously reported metal organic framework (MOF) nanocomposite materials; however, this type of hybrid material has not yet been explored for COFs. As such, our findings open a new pathway toward potential multifunctional materials that can combine thermometry with other modalities, such as catalysis or drug delivery, in just one nanocomposite material.
Collapse
Affiliation(s)
- Laurens Bourda
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Anna M Kaczmarek
- NanoSensing Group, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Min Peng
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Sonali Mohanty
- NanoSensing Group, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Hannes Rijckaert
- SCRiPTS, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Gálico DA, Santos Calado CM, Murugesu M. Lanthanide molecular cluster-aggregates as the next generation of optical materials. Chem Sci 2023; 14:5827-5841. [PMID: 37293634 PMCID: PMC10246660 DOI: 10.1039/d3sc01088k] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
In this perspective, we provide an overview of the recent achievements in luminescent lanthanide-based molecular cluster-aggregates (MCAs) and illustrate why MCAs can be seen as the next generation of highly efficient optical materials. MCAs are high nuclearity compounds composed of rigid multinuclear metal cores encapsulated by organic ligands. The combination of high nuclearity and molecular structure makes MCAs an ideal class of compounds that can unify the properties of traditional nanoparticles and small molecules. By bridging the gap between both domains, MCAs intrinsically retain unique features with tremendous impacts on their optical properties. Although homometallic luminescent MCAs have been extensively studied since the late 1990s, it was only recently that heterometallic luminescent MCAs were pioneered as tunable luminescent materials. These heterometallic systems have shown tremendous impacts in areas such as anti-counterfeiting materials, luminescent thermometry, and molecular upconversion, thus representing a new generation of lanthanide-based optical materials.
Collapse
Affiliation(s)
- Diogo Alves Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | | | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
6
|
Gálico DA, Murugesu M. Boosting the sensitivity with time-gated luminescence thermometry using a nanosized molecular cluster aggregate. NANOSCALE 2023; 15:5778-5785. [PMID: 36857687 DOI: 10.1039/d2nr06382d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Luminescence thermometry with trivalent lanthanide ions is a promising avenue for contactless temperature probing. The area has been growing exponentially for the last two decades, and its viability has been successfully demonstrated in various research domains. However, moving from laboratory equipment to real-life applications remains a challenging task. One of the reasons is the possibility of a background luminescence from the probing device or probed environment. To tackle this issue, we elegantly incorporate a rarely explored thermometric approach called time-gated luminescence thermometry (TGLT). Furthermore, we demonstrate an enhanced relative sensitivity through this innovative approach and a path to move toward practical application.
Collapse
Affiliation(s)
- Diogo Alves Gálico
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
7
|
Terlingen BJP, Arens T, van Swieten TP, Rabouw FT, Prins PT, de Beer MM, Meijerink A, Ahr MP, Hutter EM, van Lare CEJ, Weckhuysen BM. Bifunctional Europium for Operando Catalyst Thermometry in an Exothermic Chemical Reaction. Angew Chem Int Ed Engl 2022; 61:e202211991. [PMID: 36328981 PMCID: PMC10099702 DOI: 10.1002/anie.202211991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Indexed: 11/06/2022]
Abstract
Often the reactor or the reaction medium temperature is reported in the field of heterogeneous catalysis, even though it could vary significantly from the reactive catalyst temperature. The influence of the catalyst temperature on the catalytic performance and vice versa is therefore not always accurately known. We here apply EuOCl as both solid catalyst and thermometer, allowing for operando temperature determination. The interplay between reaction conditions and the catalyst temperature dynamics is studied. A maximum temperature difference between the catalyst and oven of +16 °C was observed due to the exothermicity of the methane oxychlorination reaction. Heat dissipation by radiation appears dominating compared to convection in this set-up, explaining the observed uniform catalyst bed temperature. Application of operando catalyst thermometry could provide a deeper mechanistic understanding of catalyst performances and allow for safer process operation in chemical industries.
Collapse
Affiliation(s)
- Bas J. P. Terlingen
- Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular ChemistryDepartment of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Tjom Arens
- Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular ChemistryDepartment of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Thomas P. van Swieten
- Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular ChemistryDepartment of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Freddy T. Rabouw
- Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular ChemistryDepartment of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - P. Tim Prins
- Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular ChemistryDepartment of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | | | - Andries Meijerink
- Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular ChemistryDepartment of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Mathieu P. Ahr
- KLK Kolb SpecialtiesLangestraat 1377491 AEDeldenThe Netherlands
| | - Eline M. Hutter
- Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular ChemistryDepartment of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | | | - Bert M. Weckhuysen
- Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular ChemistryDepartment of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
8
|
Chamberlain TW, Perrella RV, Oliveira TM, de Sousa Filho PC, Walton RI. A Highly Stable Yttrium Organic Framework as a Host for Optical Thermometry and D 2 O Detection. Chemistry 2022; 28:e202200410. [PMID: 35157353 PMCID: PMC9313560 DOI: 10.1002/chem.202200410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/12/2022]
Abstract
The yttrium organic framework (Y0.89 Tb0.10 Eu0.01 )6 (BDC)7 (OH)4 (H2 O)4 (BDC=benzene-1,4-dicarboxylate) is hydrothermally stable up to at least 513 K and thermally stable in air in excess of 673 K. The relative intensities of luminescence of Tb3+ and Eu3+ are governed by Tb3+ -to-Eu3+ phonon-assisted energy transfer and Tb3+ -to-ligand back transfer and are responsible for the differing temperature-dependent luminescence of the two ions. This provides a ratiometric luminescent thermometer in the 288-573 K temperature range, not previously seen for MOF materials, with a high sensitivity, 1.69±0.04 % K-1 at 523 K. In aqueous conditions, loosely bound H2 O can be replaced by D2 O in the same material, which modifies decay lifetimes to yield a quantitative luminescent D2 O sensor with a useful sensitivity for practical application.
Collapse
Affiliation(s)
| | - Rafael V. Perrella
- Institute of ChemistryUniversity of CampinasPO Box 615413083-970CampinasSPBrazil
| | - Tamires M. Oliveira
- Institute of ChemistryUniversity of CampinasPO Box 615413083-970CampinasSPBrazil
| | | | | |
Collapse
|
9
|
Yeow E, Wu X. Exploiting the upconversion luminescence, Lewis acid catalytic and photothermal properties of lanthanide-based nanomaterials for chemical and polymerization reactions. Phys Chem Chem Phys 2022; 24:11455-11470. [DOI: 10.1039/d2cp00560c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide-based nanocrystals possess three unique physical properties that make them attractive for facilitating photoreactions, namely photon upconversion, Lewis acid catalytic activity and photothermal effect. When co-doped with suitable sensitizer and...
Collapse
|