1
|
Xue C, Peng H, Hou J, Qu K. Pore space partition on a sulfonate-rich metal-organic framework for purification of methane from natural gas. Chem Commun (Camb) 2025; 61:8244-8247. [PMID: 40337889 DOI: 10.1039/d5cc01014d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
By implementing the pore space partition (PSP) strategy on a sulfonate-rich acs-type metal-organic framework (MOF), we developed a new pacs structure, which features segmented pores with abundant O/N interacting sites. This structure selectively uptakes C2H6 and C3H8 from the ternary mixture of C2H6/C3H8/CH4 with high selectivity and capacity, enabling effective purification of CH4 from natural gas through a single adsorption process.
Collapse
Affiliation(s)
- Chaozhuang Xue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Hui Peng
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Jinle Hou
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Konggang Qu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
2
|
Xiao J, Zhu Z, Zhang M, Huang Y, Zhang TC, Yuan S. Efficient One-Step Purification of Methanol-to-Olefin Products Using a Porphyrinyl MOF to Achieve Record C 2H 4 and C 3H 6 Productivity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21630-21642. [PMID: 40156512 DOI: 10.1021/acsami.4c21500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
The separation of methanol-to-olefin (MTO) products to obtain high-purity ethylene (C2H4) and propylene (C3H6) is a challenging yet critical task, as these compounds are essential industrial raw materials for polymer synthesis. However, developing adsorbents with high selectivity and productivity for C2H4/C3H6 remains a significant challenge and an urgent necessity. In this study, a porphyrinyl metal-organic framework (MOF), Al-TCPP, was developed for the simultaneous recovery of C3H6 and C2H4 through a one-step adsorption-desorption process. Benefiting from its well-developed microporous structure and abundant N- and O-accessible sites, Al-TCPP demonstrated exceptional adsorption capacities and selectivity for C3H6 and ethane (C2H6) over C2H4 under ambient conditions. The adsorption capacities (in cm3·g-1) reached 162.4 for C3H6 and 118.5 for C2H6 at 298 K and 100 kPa. The ideal adsorbed solution theory (IAST) selectivity values for C3H6/C2H4 and C2H6/C2H4 were 10.1 and 1.8, respectively. Thermodynamic studies and theoretical calculations revealed stronger interactions between C2H6 and C3H6 molecules with the Al-TCPP framework than with C2H4. Systematic breakthrough experiments demonstrated outstanding separation performance for binary C2H6/C2H4 and C3H6/C2H4 mixtures, as well as ternary C3H6/C2H6/C2H4 mixtures, achieving record productivities of 150.2 and 86.5 L·kg-1 for polymer-grade C2H4 (≥99.9%) and C3H6 (≥99.5%), respectively. Notably, the separation performance remained stable under variable flow rates, temperatures, humidities, and multiple adsorption-desorption cycles. Overall, this study highlighted Al-TCPP as a highly competitive adsorbent for addressing the challenges in MTO product separation. Moreover, it offered valuable insights into the design of MOFs with heteroatom-rich accessible sites for efficient separation of low-carbon hydrocarbons.
Collapse
Affiliation(s)
- Jianfei Xiao
- Low-carbon Technology & Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenliang Zhu
- Low-carbon Technology & Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Min Zhang
- Low-carbon Technology & Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yaoqi Huang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Tian Cheng Zhang
- Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, Nebraska 68182-0178, United States
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Xie W, Fu Q, Yang LZ, Yan L, Zhang J, Zhao X. Methane Storage and Purification of Natural Gas in Metal-Organic Frameworks. CHEMSUSCHEM 2025; 18:e202401382. [PMID: 39196965 DOI: 10.1002/cssc.202401382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 08/30/2024]
Abstract
Natural gas, primarily composed of methane (CH4), represent an excellent choice for a potentially sustainable renewable energy transition. However, the process of compressing and liquefying CH4 for transport and storage typically results in significant energy losses. In addition, in order to optimize its efficacy as a fuel, the CH4 content of natural gas needs to be increased to a level of at least 97 % to ensure its quality and efficiency in various applications. Metal-organic frameworks (MOFs) represent a novel category of porous materials that possess exceptional capability in modifying pore size and chemical environment, making them ideally suited for the storage of CH4 and the adsorption of propane (C3H8), ethane (C2H6), carbon dioxide (CO2), nitrogen (N2), and hydrogen sulfide (H2S) to facilitate the purification process of CH4 from natural gas. In this paper, we systematically summarize the mechanism by which MOF materials facilitate the storage of CH4 and the purification of CH4 from natural gas, leveraging the structural characteristics inherent to MOF materials. The focus of further research should also be directed towards the investigation of CH4 storage by flexible MOFs, the resolution of the trade-off dilemma, and the commercial application of MOFs.
Collapse
Affiliation(s)
- Wenpeng Xie
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Qiuju Fu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ling-Zhi Yang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Liting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jun Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xuebo Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
4
|
Wang T, Zhang Y, Zheng W, Lin E, Deng C, Geng S, Chen Y, Cheng P, Zhang Z. Fabricating a Robust Ultramicroporous Metal-Organic Framework for Purifying Natural Gas and Coal Mine Methane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407701. [PMID: 39422047 DOI: 10.1002/smll.202407701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/29/2024] [Indexed: 10/19/2024]
Abstract
Purifying methane (CH4) from natural gas and coal mine methane (CMM) is of great significance but challenging in the chemical industry. Herein, a robust ultramicroporous metal-organic framework (MOF) is reported, which can be synthesized on a gram scale by stirring under room temperature. Single-component adsorption isotherms of gases (CH4, ethane (C2H6), propane (C3H8), nitrogen (N2)) and breakthrough experiments indicate that the MOF can separate CH4 efficiently from CH4/C2H6/C3H8 ternary mixture, with super high purity-CH4 production of 154.7 cm3 g-1. Additionally, the MOF shows higher CH4 capacity than N2, resulting in excellent separation performance for the CH4/N2 mixture. Notably, the binding sites of gases can be precisely determined by single-crystal X-ray data, further confirmed by molecular simulation. It is found that there are multiple hydrogen bonds and C─H···π interactions between the gases and the framework. This work offers an excellent candidate material for CH4 purification with both high capacity and separation efficiency.
Collapse
Affiliation(s)
- Ting Wang
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Yu Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Wenqi Zheng
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - En Lin
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Chenghua Deng
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois, 60637, USA
| | - Shubo Geng
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Yao Chen
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Peng Cheng
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Peng G, Su Z, Hu F, Ji Z, Di Z, Li G, Gao T, Zhou G, Wu M. A 2-fold interpenetrating 3D pillar-layered MOF for the gas separation and detection of metal ions. Dalton Trans 2024; 53:16815-16820. [PMID: 39392402 DOI: 10.1039/d4dt02024c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A 2-fold interpenetrating 3D pillar-layered MOF, which was assembled from a mixed-linker and paddle-wheel cluster, was successfully synthesized. It possesses good thermal and water stability as well as high selectivity for C2H6 over CH4 and CO2 over N2 under ambient conditions, which was further proved by breakthrough experiments. Moreover, this porous material exhibits good detection of Cu2+, [Co(NH3)6]3+ and Fe3+ in an aqueous solution.
Collapse
Affiliation(s)
- Guoqiang Peng
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Zhibo Su
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Falu Hu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Zhenyu Ji
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.
| | - Zhengyi Di
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Guihua Li
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Tingting Gao
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Guowei Zhou
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Mingyan Wu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.
| |
Collapse
|
6
|
Deng C, Zhao L, Gao MY, Darwish S, Song BQ, Sensharma D, Lusi M, Peng YL, Mukherjee S, Zaworotko MJ. Ultramicroporous Lonsdaleite Topology MOF with High Propane Uptake and Propane/Methane Selectivity for Propane Capture from Simulated Natural Gas. ACS MATERIALS LETTERS 2024; 6:56-65. [PMID: 38178981 PMCID: PMC10762655 DOI: 10.1021/acsmaterialslett.3c01157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Propane (C3H8) is a widely used fuel gas. Metal-organic framework (MOF) physisorbents that are C3H8 selective offer the potential to significantly reduce the energy footprint for capturing C3H8 from natural gas, where C3H8 is typically present as a minor component. Here we report the C3H8 recovery performance of a previously unreported lonsdaleite, lon, topology MOF, a chiral metal-organic material, [Ni(S-IEDC)(bipy)(SCN)]n, CMOM-7. CMOM-7 was prepared from three low-cost precursors: Ni(SCN)2, S-indoline-2-carboxylic acid (S-IDECH), and 4,4'-bipyridine (bipy), and its structure was determined by single crystal X-ray crystallography. Pure gas adsorption isotherms revealed that CMOM-7 exhibited high C3H8 uptake (2.71 mmol g-1) at 0.05 bar, an indication of a higher affinity for C3H8 than both C2H6 and CH4. Dynamic column breakthrough experiments afforded high purity C3H8 capture from a gas mixture comprising C3H8/C2H6/CH4 (v/v/v = 5/10/85). Despite the dilute C3H8 stream, CMOM-7 registered a high dynamic uptake of C3H8 and a breakthrough time difference between C3H8 and C2H6 of 79.5 min g-1, superior to those of previous MOF physisorbents studied under the same flow rate. Analysis of crystallographic data and Grand Canonical Monte Carlo simulations provides insight into the two C3H8 binding sites in CMOM-7, both of which are driven by C-H···π and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Chenghua Deng
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Li Zhao
- Department
of Applied Chemistry, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Mei-Yan Gao
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Shaza Darwish
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Bai-Qiao Song
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Debobroto Sensharma
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Matteo Lusi
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Yun-Lei Peng
- Department
of Applied Chemistry, College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Soumya Mukherjee
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Michael J. Zaworotko
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
7
|
Li XY, Wang YB, Duan HY, Liu SR. Porous MOF Featuring 2D Intersecting Channels Based on a Pentanuclear Mn 5(COO) 10CO 3 Cluster with Upgrading of Pipeline Natural Gas. Inorg Chem 2023; 62:19043-19051. [PMID: 37939347 DOI: 10.1021/acs.inorgchem.3c02870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Natural gas plays a crucial role in daily and industrial production, but the impurities contained in natural gas limit its further use. It is very important to develop adsorbents that can separate CH4 from multicomponent mixtures, but there are still many challenges and problems. Herein, a novel porous MOF {[Mn5(pbdia)2(CO3)(H2O)2] ↔ 5H2O ↔ 2DMF}n (pbdia = 2,2'-(5-carboxy-1,3-phenylene)bis(oxy) diterephthalic acid) was successfully synthesized based on a flexible pentacarboxylic acid ligand and a unique pentanuclear Mn5(COO)10CO3 cluster. The MOF reveals a 3D porous structure with 2D intersecting channels, which shows high C3H8, C2H6, and CO2 adsorption capacities and affinities over CH4. Moreover, the ideal adsorption solution theory selectivities of C3H8/CH4, C2H6/CH4, and CO2/CH4 can reach 263.0, 27.0, and 7.7, respectively, suggesting a potential for removing the low content of C3H8, C2H6, and CO2 from pipeline natural gas, which was further confirmed by breakthrough curves and GCMC simulations.
Collapse
Affiliation(s)
- Xiu-Yuan Li
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P. R. China
| | - Ying-Bo Wang
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P. R. China
| | - Hai-Yu Duan
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P. R. China
| | - Si-Ru Liu
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P. R. China
| |
Collapse
|
8
|
Song Z, Zheng Y, Chen Y, Cai Y, Wei RJ, Gao J. Halogen-modified metal-organic frameworks for efficient separation of alkane from natural gas. Dalton Trans 2023; 52:15462-15466. [PMID: 37477392 DOI: 10.1039/d3dt01554h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
As a rich green energy source, natural gas is widely used in many fields such as the chemical industry, automobile energy, and daily life. However, it is very challenging to separate and recover C2H6 and C3H8 from natural gas. Metal-organic frameworks (MOFs) as an emerging type of multi-pore porous materials show huge potential in gas adsorption separation. Herein, we report pillar-layered MOFs, Ni (BDC)(DABCO)0.5 (DMOF-X), modified by halogen atoms (F, Cl, Br), and investigate their CH4/C2H6/C3H8 separation performance. The experimental results show that DMOF-Cl exhibited a extremely high adsorption capacity for C3H8 and C2H6. Under the conditions of 298 K and 100 kPa, the adsorption capacities for C3H8 and C2H6 on DMOF-Cl are as high as 6.23 and 4.94 mmol g-1, which are superior to the values for most of the porous materials that have been reported. In addition, DMOF-Cl also shows high C3H8/CH4 (5: 85, V/V) and C2H6/CH4 (10: 85, V/V) separation selectivities, with values of 130.9 and 12.5, respectively. Finally, DMOF-Cl also demonstrated great potential as an adsorbent for separating C3H8/C2H6/CH4.
Collapse
Affiliation(s)
- Zhirong Song
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yanchun Zheng
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yiqi Chen
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Youlie Cai
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Rong-Jia Wei
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Junkuo Gao
- Institute of Functional Porous Materials, The Key laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
9
|
Designed metal-organic frameworks with potential for multi-component hydrocarbon separation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
10
|
Cheng H, Wang Q, Bai J. Ligand-Functional Groups Induced Tuning MOFs' 2D into 1D Pore Channels for Pipeline Natural Gas Purification. Chemistry 2023; 29:e202202047. [PMID: 36259356 DOI: 10.1002/chem.202202047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/07/2022]
Abstract
The solvothermal reactions of CoCl2 ⋅ 6H2 O, 3,5-pyridinedicarboxylic acid (H2 L) and isonicotinic acid (HL1 )/3-amino isonicotinic acid (HL2 )/3-chloro isonicotinic acid (HL3 ) successfully led to three tfz-d topological pillar-layer [Co4 (μ-F)2 (COO)6 (NC5 H4 )4 ] cluster-based MOFs, namely, [Co4 (μ-F)2 (L)2 (L1 )2 ⋅ 2DMA] ⋅ DMA ⋅ 2H2 O (SNNU-Bai76, SNNU-Bai=Shaanxi Normal University Bai's group), [Co4 (μ-F)2 (L)2 (L2 )2 ⋅ 2H2 O] ⋅ 2DMA ⋅ 2H2 O (SNNU-Bai77) and [Co4 (μ-F)2 (L)2 (L3 )2 ⋅ 2H2 O] ⋅ 2DMF ⋅ 2H2 O (SNNU-Bai78). With the 2D pore channels in SNNU-Bai76 and SNNU-Bai77 being tuned to the 1D pore channel in SNNU-Bai78, C3 H8 and C2 H6 adsorption uptakes are apparently improved and the IAST selectivities of C3 H8 /CH4 and C2 H6 /CH4 almost remain, which indicate that SNNU-Bai78 may be one potential separation material for the pipeline natural gas purification. These were further confirmed by the breakthrough experiments for the simulated pipeline natural gas (C3 H8 /C2 H6 /CH4 : 5/10/85 gas mixture) of three isostructural MOFs. Furthermore, GCMC simulations revealed that due to one of the pore channels blocked by Cl atoms in a couple of 3-chloro isonicotinic acid with the changed conformation as the pillar, the pore wall of the formed 1D pore channel in SNNU-Bai78 may interact with the adsorbed C3 H8 or C2 H6 molecule more strongly, for which more atoms of framework at the new adsorption site will interact with the adsorbed gas molecule by more intermolecular interactions. This was also evidenced by the increased binding energies, being consistent with the tuning of adsorption enthalpies for C3 H8 and C2 H6 gas molecules, and the reduced C3 H8 and C2 H6 gas diffusion coefficients in SNNU-Bai78. Very interestingly, this work is the first example of finely tuning the pore connectivity of MOFs toward strengthened host-guest interactions for the gas adsorption and separation.
Collapse
Affiliation(s)
- Hongtao Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Qian Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Junfeng Bai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
11
|
Yan J, Tong S, Sun H, Guo S. Highly Efficient Separation of C1−C3 Alkanes and CO2 in Carbazole-Based Nanoporous Organic Polymers. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Duan HY, Li XY, Zhang CX, He C. A novel trigonal bipyramidal cage-based Zn( ii)-MOF featuring two types of trinuclear clusters with high gas sorption properties. CrystEngComm 2022. [DOI: 10.1039/d2ce01399a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique trigonal bipyramidal cage-based Zn(ii)-MOF built from a linear trinuclear pin-wheel cluster and a triangular trinuclear cluster was prepared and shows a moderate gas adsorption amounts and high selectivities towards C2Hn/CH4 and C2H2/CO2.
Collapse
Affiliation(s)
- Hai-Yu Duan
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xiu-Yuan Li
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Chen-Xu Zhang
- Department of Medical Equipment and Metrology, School of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Chaozheng He
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China
| |
Collapse
|
13
|
Bai J, Ding M, Wang Q, Cheng H. Synthesis, Structure and Highly Selective C3H8/CH4 and C2H6/CH4 Adsorptions of a (4,8)-c Ternary flu-Metal-organic Framework based upon both [Sc4O2(COO)8] and [Cu4OCl6] Clusters. CrystEngComm 2022. [DOI: 10.1039/d2ce00133k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new ternary flu topological metal-organic framework based upon the torsional cubic 8-connected [Sc4O2(COO)8] cluster and the tetrahedral 4-connected [Cu4OCl6] cluster, namely, [Sc4O2(Cu4Cl6O)2(L)8•5H2O]•xGuest (SNNU-Bai69; SNNU-Bai = Shaanxi Normal University, Bai’s...
Collapse
|
14
|
Tao Y, Qin HF, Hu ZR, Pan ZT, Yao PF, Bian HD, Yao D, Qin XH, Huang FP. Bottom-up synthesis strategy of a two-dimensional {Fe5} cluster-based coordination polymer: stepwise formation of a {Fe5} cluster and its dimension augmentation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01333e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A 2D cluster-based coordination polymer of {Fe5}-2D was developed by hierarchical dimension augmentation from its 1D coordination polymer of {Fe5}-1D and discrete 0D cluster of {Fe5}-0D. And a possible bottom-up synthesis mechanism was proposed.
Collapse
Affiliation(s)
- Ye Tao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Huang-Fei Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhi-Rong Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhao-Ting Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Peng-Fei Yao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
- College of Chemistry and Environmental Engineering, Baise University, Baise, Guangxi 533000, P. R. China
| | - He-Dong Bian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
- Key Laboratory of Development and Application of Forest Chemicals of Guangxi, Guangxi University of Nationalities, Nanning 530006, P. R. China
| | - Di Yao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiao-Huan Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Ping Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|