1
|
Guo L, Wang N, Zhang Y, Omer AM, Ouyang XK, Zhang J, Mei L. Glucose oxidase-embedded mesoporous polydopamine nanoparticles produce CO for synergistic tumor starvation, chemodynamic, and photothermal therapy. Colloids Surf B Biointerfaces 2025; 253:114729. [PMID: 40288110 DOI: 10.1016/j.colsurfb.2025.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/14/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Starvation therapy, developed by exploiting glucose oxidase (Gox) to convert glucose into gluconic acid and hydrogen peroxide (H₂O₂), represents a promising approach to treating tumors that heavily rely on the glycolysis pathway to meet their high energy demands. However, the efficacy of Gox monotherapy is hindered by the hypoxic tumor microenvironment and activation of energy compensation mechanisms. In this study, we present a novel multimodal therapeutic nanoplatform that synergistically integrates starvation therapy with photothermal therapy (PTT) and chemodynamic therapy (CDT) to overcome these limitations. Mesoporous polydopamine (MPDA), a biocompatible material, was combined with the CO precursor Fe₃(CO)₁₂ and Gox. Upon reaching the tumor site, the acidic environment activates the nanoplatform, initiating the conversion of glucose to gluconic acid and H₂O₂ by Gox. This process facilitates CO release and Fe²⁺ generation, leading to a cascade of Fenton reactions that produce reactive oxygen species (ROS). CO inhibits cytochrome c oxidase, disrupting mitochondrial adenosine triphosphate (ATP) production and downregulating heat shock proteins (Hsp), thereby sensitizing tumor cells to PTT-induced damage. Our results demonstrate that this comprehensive therapeutic approach significantly enhances the efficacy of cancer treatment, offering a promising strategy for improved clinical outcomes.
Collapse
Affiliation(s)
- Lirong Guo
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yuqin Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China
| | - A M Omer
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava 84541, Slovakia; Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Jinxie Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China.
| |
Collapse
|
2
|
Yang K, Chen Q, Chen J, Geng LF, Ma MX, Gu YQ, Choudhary MI, Liang H, Chen ZF. Copper(II) Complexes of Pyrazolopyrimidine Derivatives as Anticancer Agents with Enhanced Chemodynamic Therapy through Bimodal Apoptosis and Ferroptosis. J Med Chem 2025; 68:7137-7152. [PMID: 40138496 DOI: 10.1021/acs.jmedchem.4c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
We reported 10 new copper(II) complexes 1-10 with pyrazolopyrimidine derivatives as ligands. Complexes 2 and 4 reacted with glutathione (GSH) in cells through Fenton-like reaction to generate highly toxic hydroxyl radical (·OH) for chemodynamic therapy (CDT), and reduced endogenous glutathione peroxidase 4 (GPX4) to induce ferroptosis. In addition, these complexes effectively caused mitochondrial dysfunction and induced apoptosis and autophagy in tumor cells. Furthermore, 2 and 4 effectively inhibited the bladder cancer cell growth in a xenograft model. This study presents new copper(II) complexes that can significantly induce bladder cancer cells death by enhanced CDT through bimodal apoptosis and ferroptosis, providing a promising approach for cancer therapy.
Collapse
Affiliation(s)
- Kun Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qian Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Juan Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lu-Fei Geng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Meng-Xue Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yun-Qiong Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Muhammad Iqbal Choudhary
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74270, Pakistan
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
3
|
Qin Y, Lu H, Shu Y, Wang JH. Atovaquone-Coordinated Copper-Polyphenol Nanoplatform Orchestrates Dual Metabolic Interference for Synergistic Cuproptosis and Apoptosis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21001-21012. [PMID: 40148125 DOI: 10.1021/acsami.5c05104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Cuproptosis, a copper-dependent cell death mechanism, is hindered by tumor microenvironment (TME)-driven resistance including glutathione (GSH)-mediated copper detoxification and hypoxia-induced metabolic adaptation. We propose a "dual metabolic interference" strategy to amplify cuproptosis by synergistically targeting iron-sulfur (Fe-S) cluster proteins and suppressing oxidative phosphorylation (OXPHOS). A TME-responsive nanoplatform (ACH NPs) was constructed based on a copper-shikonin coordination network (CuSK), the OXPHOS inhibitor atovaquone (ATO), and hyaluronic acid (HA). Upon GSH/acid-triggered release, Cu+/Cu2+ and ATO/SK synergistically induced irreversible damage: (1) Copper overload induces dihydrolipoamide transacetylase (DLAT) aggregation and irreversible Fe-S cluster loss, directly disrupting mitochondrial complexes I-III functions; (2) ATO further suppresses complex III activity, reducing oxygen consumption and blocking ATP synthesis to exacerbate metabolic crisis; (3) Concurrently, Cu+-catalyzed Fenton-like reactions synergize with SK-driven oxidative stress to generate •OH radicals, activating Caspase-3-dependent apoptosis. In vivo experiments verified that this dual metabolic interference strategy effectively inhibited tumor growth (86.8% tumor suppression). These findings not only expand the theoretical boundaries of cuproptosis but also establish a promising paradigm for cancer therapy through coordinated targeting of metal homeostasis and metabolic vulnerabilities.
Collapse
Affiliation(s)
- Yuxin Qin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Huiying Lu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
4
|
Xu R, Wang S, Guo Q, Zhong R, Chen X, Xia X. Anti-Tumor Strategies of Photothermal Therapy Combined with Other Therapies Using Nanoplatforms. Pharmaceutics 2025; 17:306. [PMID: 40142970 PMCID: PMC11944535 DOI: 10.3390/pharmaceutics17030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/02/2025] [Accepted: 02/15/2025] [Indexed: 03/28/2025] Open
Abstract
Conventional cancer treatments often have complications and serious side effects, with limited improvements in 5-year survival and quality of life. Photothermal therapy (PTT) employs materials that convert light to heat when exposed to near-infrared light to raise the temperature of the tumor site to directly ablate tumor cells, induce immunogenic cell death, and improve the tumor microenvironment. This therapy has several benefits, including minimal invasiveness, high efficacy, reduced side effects, and robust targeting capabilities. Beyond just photothermal conversion materials, nanoplatforms significantly contribute to PTT by supplying effective photothermal conversion materials and bolstering tumor targeting to amplify anti-tumor effects. However, the anti-tumor effects of PTT alone are ultimately limited and often need to be combined with other therapies. This narrative review describes the recent progress of PTT combined with chemotherapy, radiotherapy, photodynamic therapy, immunotherapy, gene therapy, gas therapy, chemodynamic therapy, photoacoustic imaging, starvation therapy, and multimodal therapy. Studies have shown that combining PTT with other treatments can improve efficacy, reduce side effects, and overcome drug resistance. Despite the encouraging results, challenges such as optimizing treatment protocols, addressing tumor heterogeneity, and overcoming biological barriers remain. This paper highlights the potential for personalized, multimodal approaches to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Rubing Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China (Q.G.)
| | - Shengmei Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Qiuyan Guo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China (Q.G.)
| | - Ruqian Zhong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China (Q.G.)
| | - Xi Chen
- Hunan Provincial Center for Drug Evaluation and Adverse Reaction Monitoring, Changsha 410013, China;
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China (Q.G.)
| |
Collapse
|
5
|
Cun JE, He Z, Fan X, Pan Q, Luo K, He B, Pu Y. Copper-Based Bio-Coordination Nanoparticle for Enhanced Pyroptosis-Cuproptosis Cancer Immunotherapy through Redox Modulation and Glycolysis Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409875. [PMID: 39757406 DOI: 10.1002/smll.202409875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Copper-based nanoparticles have garnered significant interest in cancer therapy due to their ability to induce oxidative stress and cuproptosis in cancer cells. However, their antitumor effectiveness is constrained by the dynamic redox balance and the metabolic shift between oxidative phosphorylation and glycolysis. Here, a polydopamine-coated copper-α-ketoglutaric acid (α-KG) coordination polymer nanoparticle (CKPP) is designed for combined pyroptosis-cuproptosis cancer immunotherapy by amplifying reactive oxygen species (ROS) production and regulating cellular metabolism. The intracellular redox imbalance is achieved through the synergistic effects of α-KG-induced mitochondrial metabolic reprogramming, photothermally enhanced superoxide dismutase-like activity of polydopamine, and glutathione depletion by copper ions. The multifaceted redox modulation results in a substantial increase in intracellular ROS levels, triggering oxidative stress and subsequent pyroptosis in cancer cells. Furthermore, α-KG shifts cellular metabolism from glycolysis to oxidative phosphorylation, thereby enhancing cuproptosis induced by copper ions. The combination of ROS dyshomeostasis and glycolysis inhibition results in a potent enhancement of pyroptosis-cuproptosis-mediated cancer therapy. In a murine model of colorectal cancer, CKPP exhibited a remarkable anticancer effect, achieving a tumor inhibition rate of 96.3% and complete tumor eradication in two out of five cases. Overall, this bio-engineered metal-organic nanocomposite demonstrates significant potential for treating cancer through combined pyroptosis-cuproptosis cancer immunotherapy.
Collapse
Affiliation(s)
- Ju-E Cun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| | - Ziyun He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
6
|
Liu Z, Ling J, Wang N, Ouyang XK. Redox homeostasis disruptors enhanced cuproptosis effect for synergistic photothermal/chemodynamic therapy. J Colloid Interface Sci 2025; 678:1060-1074. [PMID: 39236435 DOI: 10.1016/j.jcis.2024.08.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
The combination of chemodynamic therapy (CDT) with photothermal therapy (PTT) is a promising approach to enhance antitumor efficacy of chemotherapeutics. In this paper, we developed novel copper-chelated polydopamine (PDA) nanoparticles (NPs) functionalized with hyaluronic acid (HA) (Cu-PDA-HA NPs) to induce apoptosis and cuproptosis-induced cell death, synergistically combining PTT and CDT. Experimental results revealed that Cu-PDA-HA NPs can respond to excessive glutathione (GSH) and hydrogen peroxide (H2O2) in the tumor microenvironment (TME), which will enable their specific degradation, thereby leading to efficient accumulation of Cu2+ within tumor cells. The released Cu2+ ions were reduced by GSH to generate Cu+, which catalyzed in situ Fenton-like reactions to produce cytotoxic hydroxyl radicals (·OH), disrupting cellular redox homeostasis and promoting apoptosis-related CDT. Meanwhile, the photothermal effect of the Cu-PDA-HA NPs could enhance oxidative stress within the tumor by elevating the temperature and subsequent ·OH production. The enhanced oxidative stress made tumor cells more vulnerable to cuproptosis-induced toxicity. Furthermore, in vivo experiments demonstrated that Cu-PDA-HA NPs can still undergo a temperature increase of 18.9°C following 808 nm near-infrared irradiation (1.0 W/cm2, 5 min). Meanwhile, Cu-PDA-HA NPs were able to induce oligomerization of dihydrolipoamide S-acetyltransferase (DLAT) and down-regulate Fe-S cluster proteins such as ferredoxin (FDX1), thereby activating cuproptosis. Therefore, this study provides a novel approach for designing multifunctional nanoparticles with on-demand Cu2+ release and offers a fresh perspective for exploring synergistic therapeutic strategies involving CDT/PTT/apoptosis/cuproptosis.
Collapse
Affiliation(s)
- Zhen Liu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
7
|
Süngü Akdoğan Ç, Akbay Çetin E, Onur MA, Önel S, Tuncel A. Copper(II) Oxide Spindle-like Nanomotors Decorated with Calcium Peroxide Nanoshell as a New Nanozyme with Photothermal and Chemodynamic Functions Providing ROS Self-Amplification, Glutathione Depletion, and Cu(I)/Cu(II) Recycling. ACS APPLIED MATERIALS & INTERFACES 2025; 17:632-649. [PMID: 39720911 PMCID: PMC11783533 DOI: 10.1021/acsami.4c17852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024]
Abstract
Uniform, mesoporous copper(II) oxide nanospindles (CuO NSs) were synthesized via a method based on templated hydrothermal oxidation of copper in the presence of monodisperse poly(glycerol dimethacrylate-co-methacrylic acid) nanoparticles (poly(GDMA-co-MAA) NPs). Subsequent decoration of CuO NSs with a CaO2 nanoshell (CuO@CaO2 NSs) yielded a nanozyme capable of Cu(I)/Cu(II) redox cycling. Activation of the Cu(I)/Cu(II) cycle by exogenously generated H2O2 from the CaO2 nanoshell significantly enhanced glutathione (GSH) depletion. CuO@CaO2 NSs exhibited a 2-fold higher GSH depletion rate compared to pristine CuO NSs. The generation of oxygen due to the catalase (CAT)-like decomposition of H2O2 by CuO@CaO2 NSs resulted in a self-propelled diffusion behavior, characteristic of a H2O2 fueled nanomotor. These nanostructures exhibited both peroxidase (POD)-like and CAT-like activities and were capable of self-production of H2O2 in aqueous media via a chemical reaction between the CaO2 nanoshell and water. Usage of the self-supplied H2O2 by the POD-like activity of CuO@CaO2 NSs amplified the generation of toxic hydroxyl (•OH) radicals, enhancing the chemodynamic effect within the tumor microenvironment (TME). The CAT-like activity provided a source of self-supplied O2 via decomposition of H2O2 to alleviate hypoxic conditions in the TME. Under near-infrared laser irradiation, CuO@CaO2 NSs exhibited photothermal conversion properties, with a temperature elevation of 25 °C. The combined GSH depletion and H2O2 generation led to a more effective production of •OH radicals in the cell culture medium. The chemodynamic function was further enhanced by an elevated temperature. To assess the therapeutic potential, CuO@CaO2 NSs loaded with the photosensitizer, chlorine e6 (Ce6), were evaluated against T98G glioblastoma cells. The synergistic combination of photodynamic, photohermal, and chemodynamic modalities using CuO@CaO2@Ce6 NSs resulted in cell death higher than 90% under in vitro conditions.
Collapse
Affiliation(s)
- Çağıl
Zeynep Süngü Akdoğan
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Graduate
School of Science & Engineering, Hacettepe
University, Ankara 06800, Turkey
| | - Esin Akbay Çetin
- Department
of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Mehmet Ali Onur
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Department
of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Selis Önel
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Chemical
Engineering Department, Hacettepe University, Ankara 06800, Turkey
| | - Ali Tuncel
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Chemical
Engineering Department, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
8
|
Liang KA, Chih HY, Liu IJ, Yeh NT, Hsu TC, Chin HY, Tzang BS, Chiang WH. Tumor-targeted delivery of hyaluronic acid/polydopamine-coated Fe 2+-doped nano-scaled metal-organic frameworks with doxorubicin payload for glutathione depletion-amplified chemodynamic-chemo cancer therapy. J Colloid Interface Sci 2025; 677:400-415. [PMID: 39096708 DOI: 10.1016/j.jcis.2024.07.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Chemodynamic therapy (CDT), an emerging cancer treatment modality, uses multivalent metal elements to convert endogenous hydrogen peroxide (H2O2) to toxic hydroxyl radicals (•OH) via a Fenton or Fenton-like reaction, thus eliciting oxidative damage of cancer cells. However, the antitumor potency of CDT is largely limited by the high glutathione (GSH) concentration and low catalytic efficiency in the tumor sites. The combination of CDT with chemotherapy provides a promising strategy to overcome these limitations. In this work, to enhance antitumor potency by tumor-targeted and GSH depletion-amplified chemodynamic-chemo therapy, the hyaluronic acid (HA)/polydopamine (PDA)-decorated Fe2+-doped ZIF-8 nano-scaled metal-organic frameworks (FZ NMs) were fabricated and utilized to load doxorubicin (DOX), a chemotherapy drug, via hydrophobic, π-π stacking and charge interactions. The attained HA/PDA-covered DOX-carrying FZ NMs (HPDFZ NMs) promoted DOX and Fe2+ release in weakly acidic and GSH-rich milieu and exhibited acidity-activated •OH generation. Through efficient CD44-mediated endocytosis, the HPDFZ NMs internalized by CT26 cells not only prominently enhanced •OH accumulation by consuming GSH via PDA-mediated Michael addition combined with Fe2+/Fe3+ redox couple to cause mitochondria damage and lipid peroxidation, but also achieved intracellular DOX release, thus eliciting apoptosis and ferroptosis. Importantly, the HPDFZ NMs potently inhibited CT26 tumor growth in vivo at a low DOX dose and had good biosafety, thereby showing promising potential in tumor-specific treatment.
Collapse
Affiliation(s)
- Kai-An Liang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiang-Yun Chih
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - I-Ju Liu
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Nien-Tzu Yeh
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
9
|
Shi F, Chen J, Yan L, Tu J. GSH-Depleting and H 2O 2 Self-Supplying Calcium Peroxide-Based Nanoplatforms for Efficient Bacterial Eradication via Photothermal-Enhanced Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69055-69070. [PMID: 39641780 DOI: 10.1021/acsami.4c17388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Chemodynamic therapy (CDT), an innovative approach for treating bacterial infections, has garnered significant attention due to its ability to generate hydroxyl radicals (•OH) via Fenton/Fenton-like reactions. However, the effectiveness of CDT is considerably hindered by the limited availability of endogenous hydrogen peroxide (H2O2) and the overexpression of glutathione (GSH) within the infection microenvironment. To address these limitations, a multifunctional nanoplatform with self-supplying H2O2, GSH-depletion properties, and photothermal properties was developed through a straightforward and mild strategy. This platform employs calcium peroxide (CaO2) as the core, coated with silica (SiO2) to enhance stability and further modified with a Cu(II)-doped polydopamine (PDA) layer, forming a core-shell structured CaO2@SiO2@PDA-Cu (CSPC). The Cu(II) released by CSPC, combined with the H2O2 produced from CaO2 degradation, participates in a Fenton-like reaction to generate toxic •OH radicals. Additionally, Cu(II)-mediated redox reactions deplete overexpressed GSH, thereby enhancing CDT efficacy. Upon coordination with Cu(II), the photothermal properties of PDA are significantly enhanced, achieving a photothermal conversion efficiency of up to 43%. The hyperthermia induced by photothermal therapy (PTT) further increases •OH production, augmenting CDT. The CSPC nanomaterials demonstrated outstanding synergistic photothermal bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) at 60 μg/mL, achieving complete eradication. Moreover, CSPC eliminated 65.90 ± 3.46% of the S. aureus biofilm under near-infrared (NIR) irradiation. In vivo experiments demonstrated that CSPC treatment effectively eradicated bacteria, with a bacterial survival rate of 6.56 ± 3.28%, and accelerated wound healing, reducing the relative wound size to 7.0 ± 2.6%. Therefore, this study successfully developed versatile nanomaterials that significantly enhance the PTT/CDT dual-mode antibacterial performance.
Collapse
Affiliation(s)
- Fuqiang Shi
- State Key Laboratory of Advanced Materials Synthesis and Processing Technology, Wuhan University of Technology, Hubei Provincial Biomedical Materials and Engineering Research Center, Wuhan 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Materials Synthesis and Processing Technology, Wuhan University of Technology, Hubei Provincial Biomedical Materials and Engineering Research Center, Wuhan 430070, China
| | - Lesan Yan
- State Key Laboratory of Advanced Materials Synthesis and Processing Technology, Wuhan University of Technology, Hubei Provincial Biomedical Materials and Engineering Research Center, Wuhan 430070, China
- Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528400, China
| | - Jing Tu
- State Key Laboratory of Advanced Materials Synthesis and Processing Technology, Wuhan University of Technology, Hubei Provincial Biomedical Materials and Engineering Research Center, Wuhan 430070, China
| |
Collapse
|
10
|
Zhao K, Shen G, Liu Y, Chen K, Chang R, Liu Y, Chen W, Liu H, Yang M, Xing R, Yan X. Dual-Targeted Assembled Nanodrugs for Near-Infrared Photothermal Immunotherapy of Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67532-67544. [PMID: 39576254 DOI: 10.1021/acsami.4c18320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Triple-negative breast cancer (TNBC) is known for its poor prognosis and aggressive behavior, being highly prone to recurrence and metastasis, and currently has limited effective treatment options. Photothermal therapy (PTT) is an emerging, minimally invasive, low-drug-resistance, and precisely controllable therapeutic method for cancer treatment, offering hope to break through the bottleneck in TNBC therapy. The antitumor efficiency of PTT is predominantly contingent upon the performance of the photothermal drugs. Therefore, there is an urgent need to develop photothermal drugs that not only have excellent photothermal conversion efficiency but also possess strong tumor-targeting capabilities and good biosafety. Here, we have developed a tumor-targeted photothermal agent with near-infrared (NIR) absorption capability based on the strategy of biomolecular assembly, utilizing biliverdin manganese complexes (MnBV) and amphiphilic phospholipid-polymer conjugates (DSPE-PEG and DSPE-PEG-cKNGRE). This photothermal assembled drug exhibits a uniform size, good stability, and ideal photothermal conversion efficiency. In the 4T1 tumor-bearing mouse model of TNBC, it shows good tumor dual-targeting capabilities and a significant drug enrichment performance. While ablating the primary tumor, PTT further stimulates the maturation of dendritic cells (DCs), enhancing the infiltration of T lymphocytes into the spleen and tumor, thus reshaping the immune microenvironment of TNBC and thereby effectively inhibiting tumor metastasis and recurrence. The developed photothermal assembled drug provides an innovative candidate treatment paradigm for TNBC, offering the potential to advance precise, targeted, and safe therapy for highly invasive and aggressive malignancies.
Collapse
Affiliation(s)
- Kaili Zhao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guizhi Shen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yamei Liu
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiwei Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhou Liu
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanting Chen
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huazhen Liu
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Zhang H, Qi W, Liu S, Chang Q, Deng X, Xie Y. Durable Antibacterial Photothermal Membrane Using Melanin-Inspired Cu-Doped Polynorepinephrine for Water Remediation. NANO LETTERS 2024; 24:15796-15805. [PMID: 39576052 DOI: 10.1021/acs.nanolett.4c04774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Solar-driven interfacial evaporation is an efficient approach to addressing water scarcity due to its environmental sustainability. However, the prolonged use of solar evaporators causes microbial contamination from wastewater. Inspired by the antifouling properties of polydopamine, we develop a series of mono- and dual-metal-loaded poly(norepinephrine) (PNE) nanoparticles by pre-doping multiple metal ions. Metal doping enhances the photothermal conversion efficiency (∼60%) of PNE by reducing the energy bandgap and imparts antimicrobial properties. Cu2+-loaded PNE (Cu-5) combined with laser achieves a 99.72% bactericidal rate against both E. coli and S. aureus. The Cu-5-coated cellulose membrane (Cu-5@CM) realized an evaporation rate of 2.21 kg m-2 h-1 under one sun with an evaporation efficiency of 97.4%. Cu-5@CM exhibits remarkable anti-biofouling properties, maintaining its surface integrity and evaporation performance even after 15 days of immersion in a bacterial environment. Its stable evaporation rate and long-lasting antimicrobial performance offer a promising solution to the biofouling challenges in seawater desalination.
Collapse
Affiliation(s)
- Heng Zhang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wenxin Qi
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shang Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
12
|
Ren L, Zhang J, Nie L, Shavandi A, Yunusov KE, Aharodnikau UE, Solomevich SO, Sun Y, Jiang G. Platelet Membrane-Camouflaged Copper Doped CaO 2 Biomimetic Nanomedicines for Breast Cancer Combination Treatment. ACS Biomater Sci Eng 2024; 10:7492-7506. [PMID: 39491550 DOI: 10.1021/acsbiomaterials.4c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women worldwide. Chemodynamic therapy (CDT), photothermal therapy (PTT), and ion interference therapy (IIT), used in combination, represent a common treatment. In this study, platelet membrane-camouflaged copper-doped CaO2 biomimetic nanomedicines have been developed for breast cancer treatments. Copper-doped CaO2 nanoparticles were first coated by polydopamine (PDA) and subsequently camouflaged by platelet membrane (PM) to form platelet membrane-camouflaged copper doped CaO2 biomimetic nanomedicines (Cu-CaO2@PDA/PM). The as-fabricated Cu-CaO2@PDA/PM multifunctional nanomedicines could decompose within the tumor microenvironment to release Ca2+ for ion interference therapy, and the generated H2O2 could perform a Fenton-like reaction with the assistance of loaded copper ions to produce ·OH, thus realizing chemodynamic therapy. In addition, the copper ions could also consume glutathione and weaken its ability to scavenge reactive oxygen species, which was conducive to amplifying the effect of oxidative stress. The coating of the polydopamine layer could achieve local hyperthermia of the tumor site, and the surface modification of the platelet membrane could enhance the targeting and biocompatibility of nanomedicines. In vivo and in vitro tests demonstrated that the developed Cu-CaO2@PDA/PM biomimetic nanomedicines offer a promising biomimetic nanoplatform for efficient multimodal combination therapy for breast cancer.
Collapse
Affiliation(s)
- Luping Ren
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
| | - Junhao Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Armin Shavandi
- Université libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO10 BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, 100128, Uzbekistan
| | - Uladzislau E Aharodnikau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220030, Belarus
| | - Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220030, Belarus
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
13
|
Li H, Jia Y, Bai S, Peng H, Li J. Metal-chelated polydopamine nanomaterials: Nanoarchitectonics and applications in biomedicine, catalysis, and energy storage. Adv Colloid Interface Sci 2024; 334:103316. [PMID: 39442423 DOI: 10.1016/j.cis.2024.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Polydopamine (PDA)-based materials inspired by the adhesive proteins of mussels have attracted increasing attention owing to the universal adhesiveness, antioxidant activity, fluorescence quenching ability, excellent biocompatibility, and especially photothermal conversion capability. The high binding ability of PDA to a variety of metal ions offers a paradigm for the exploration of metal-chelated polydopamine nanomaterials with fantastic properties and functions. This review systematically summarizes the latest progress of metal-chelated polydopamine nanomaterials for the applications in biomedicine, catalysis, and energy storage. Different fabrication strategies for metal-chelated polydopamine nanomaterials with various composition, structure, size, and surface chemistry, such as the pre-functionalization method, the one-pot co-assembly method, and the post-modification method, are summarized. Furthermore, emerging applications of metal-chelated polydopamine nanomaterials in the fields ranging from cancer therapy, theranostics, antibacterial, catalysis to energy storage are highlighted. Additionally, the critical remaining challenges and future directions of this area are discussed to promote the further development and practical applications of PDA-based materials.
Collapse
Affiliation(s)
- Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China..
| |
Collapse
|
14
|
Lin F, Qin Y, Sun J, Liu Y, Yang S, Zheng S, Yin L, Li D, Cui L, Li G, Qiu Z, Liu Z. Delivery of Cu(II) and Mn(II) by polydopamine-modified nanoparticles for combined photothermal and chemotherapy. J Mater Chem B 2024; 12:12062-12072. [PMID: 39445457 DOI: 10.1039/d4tb01819b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Chemodynamic therapy (CDT) has been recognized as an emerging therapeutic strategy. It has attracted considerable attention in recent years as it can generate the most harmful reactive oxygen species (ROS)-hydroxyl radicals (•OH) through the Fenton reaction or a Fenton-like reaction under the catalysis of versatile metal cations, such as, Fe(II), Fe(III), Cu(I), Mn(II), and Mn(III). However, a large number of reducing species (e.g., GSH) in tumors inhibit the therapeutic effects of CDT. This study proposes a nanocarrier strategy that can release versatile metal cations in the initial stage to consume the reducing substances, which can be convenient for subsequent CDT treatment. A novel nano-delivery system based on H-MnO2@PDA/Cu-CD@Ad-TK-Ad@Ploy-CD (abbreviated as MNZ) was proposed to resolve the above problems. Herein, hollow mesoporous manganese dioxide nanoparticles (H-MnO2) were coated with PDA and modified with copper ions on the surface of PDA. The PDA was then functionalized with β-cyclodextrin (β-CD) substitutions that were further assembled with N-((1S,3R,5S)-adamantan-1-yl)-3-((2-((3-(((3s,5s,7s)-adamantan-1-yl)amino)-3-oxopropyl)thio)propan-2-yl)thio)propenamide (Ad-TK-Ad). Poly-CD was assembled with CD to improve the stability of the reactor. The MNZ nanotheranostic platform can release Cu(II) and Mn(II), which could react with intracellular GSH to consume the reducing substances in tumors. Subsequently, H2O2 can be converted into •OH, and the effect is improved with increasing temperatures. Cytotoxicity of MNZ (200 μg mL-1) was studied by cell counting kit-8 (CCK-8) assay using HeLa cells as the models. Results indicated that cell viability was clearly reduced to 22% by the nanoparticles alone, to 18% by the nanoparticles with H2O2, and to 9% by the nanoparticles with H2O2 and NIR, under weak acidic condition (pH 6.8). This work provides a beneficial exploration for the application of nano-delivery strategies for combined photothermal and chemodynamic therapy agents.
Collapse
Affiliation(s)
- Fuli Lin
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Beisi Road, Shihezi City, Xinjiang, 832003, P. R. China.
| | - Yuchang Qin
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Beisi Road, Shihezi City, Xinjiang, 832003, P. R. China.
| | - Jingjing Sun
- School of Medicine, Shihezi University, P. R. China.
| | - Yijun Liu
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Beisi Road, Shihezi City, Xinjiang, 832003, P. R. China.
| | - Shengchao Yang
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Beisi Road, Shihezi City, Xinjiang, 832003, P. R. China.
| | - Shuang Zheng
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Beisi Road, Shihezi City, Xinjiang, 832003, P. R. China.
| | - Lisha Yin
- School of Medicine, Shihezi University, P. R. China.
| | - Dongmei Li
- School of Medicine, Shihezi University, P. R. China.
| | - Lin Cui
- School of Medicine, Shihezi University, P. R. China.
| | - Gang Li
- The First Affiliated Hospital of Shihezi University, P. R. China
| | - Zhongpeng Qiu
- The First Affiliated Hospital of Shihezi University, P. R. China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Beisi Road, Shihezi City, Xinjiang, 832003, P. R. China.
| |
Collapse
|
15
|
Liu X, Liu S, Jin X, Liu H, Sun K, Wang X, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. An encounter between metal ions and natural products: natural products-coordinated metal ions for the diagnosis and treatment of tumors. J Nanobiotechnology 2024; 22:726. [PMID: 39574109 PMCID: PMC11580416 DOI: 10.1186/s12951-024-02981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024] Open
Abstract
Natural products-coordinated metal ions to form the nanomedicines are in the spotlight for cancer therapy. Some natural products could be coordinated with metal ions forming nanomedicines via simple and green environmental self-assembly, which not only improved the bioavailability of natural products, but also conferred multiple therapeutic modalities and multimodal imaging. On the one hand, in the weak acidity, glutathione (GSH) and hydrogen peroxide (H2O2) overexpression of tumor microenvironment (TME), such carrier-free nanomedicines could be further enhanced the therapeutic effect via optimizing the species of metal ions. On the other hand, nanomedicines could exert the precise treatment of tumor under the guidance of multiple imaging. Hence, this review summarized the research progress in recent years on the application of natural product-coordinated metal ions in cancer therapy. In addition, the prospects and challenges for the application of natural product-coordinated metal ions were discussed, especially how to improve targeting ability and stability and assess the safety of metal ions, so as to facilitate the clinical translation and application of natural product-coordinated metal ions nanomedicines.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Suyi Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haifan Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Kunhui Sun
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiongqin Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
16
|
Yang B, Qian W, Zhang L. Processing Solid Hydrogels into Hollow Structures by Infrared Laser Light for Highly-Efficient Drug Loading and Controlled Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22736-22743. [PMID: 39425675 DOI: 10.1021/acs.langmuir.4c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Hollow hydrogels, characterized by their three-dimensional networks akin to biological tissues, are extensively utilized in artificial blood vessels, drug delivery, and nerve conduits due to their superior biocompatibility and fluid-transportation capacity. Nonetheless, the fabrication of hollow hydrogels presents significant challenges, including intricate steps, costly equipment, and structural instability. Consequently, refining the preparation techniques for hollow hydrogels remains paramount to surmounting the limitations of conventional methods. This research introduces an innovative approach that markedly diverges from traditional techniques, offering notable convenience and efficiency in the creation of hollow hydrogel structures. The central novelty of this method lies in employing laser light to induce an in situ photothermal effect, leading to the formation of hollow configurations. This laser-driven transformation of solid hydrogels into hollow structures addresses numerous shortcomings associated with traditional methods. For instance, conventional chemical approaches often necessitate several days to yield hollow hydrogels, and the resultant structures tend to be fragile and susceptible to damage under external pressure. In contrast, the laser-assisted technique facilitates the formation of hollow structures within 240 s, significantly outpacing traditional methods. To achieve controlled drug release, silk fibroin was integrated into the wall of the hollow hydrogels, enabling modulation of wall permeability and directing the drug release process.
Collapse
Affiliation(s)
- Bingbing Yang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Wei Qian
- Anhui Province Key Laboratory of Specialty Polymers, Anhui University of Science & Technology, Huainan 232001, People's Republic of China
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
17
|
Meng RY, Xia HY, Zhao Y, Ye YT, Wang SB, Chen AZ, Kankala RK. Nanoarchitectonics of copper sulfide nanoplating for improvement of computed tomography efficacy of bismuth oxide constructs toward drugless theranostics. Regen Biomater 2024; 11:rbae128. [PMID: 39600909 PMCID: PMC11593496 DOI: 10.1093/rb/rbae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has emerged as one of the dreadful metastatic tumors in women due to complexity, specificity and high recurrence, resulting in poor therapeutic outcomes and requiring real-time monitoring for improved theranostics. Despite the success as efficient radiosensitizers and computed tomography (CT)-based contrast agents, bismuth (Bi)-based composites suffer from poor colloidal stability, dose-dependent toxicity and pharmacokinetic shortcomings, leading to poor therapeutic monitoring. In addition, several small molecule-based therapeutics, including nanoparticle-based delivery systems, suffer from several limitations of poor therapeutic delivery and acquired multidrug resistance by cancer cells, depriving the therapeutic needs. To overcome this aspect, this study demonstrates the fabrication of drug-like/drugless nanoarchitectures based on copper sulfide-nanoplated bismuth oxide (Bi2O3@CuS, shortly BC) composites for improved theranostic efficacy against TNBC. These systematically characterized BC nanocomposites exhibited pH-/near-infrared (NIR, 808 nm) light-responsive degradability toward dual modal therapies. Due to the band transition of Cu species, the designed BC composites displayed exceptional photothermal (PTT) conversion efficiency toward localized PTT effects. In addition to pH-/NIR-responsiveness, the internally overexpressed glutathione (GSH)-responsiveness facilitated the release of Cu2+ species for chemodynamic therapy (CDT)-based effects. To this end, the Bi3+ species in the core could be fully hydrated in the acidic tumor microenvironment, resulting in GSH depletion and reducing CDT-induced reactive oxygen species clearance, thereby ablating tumors. The acid-responsive degradability of CuS resulted in the intratumoral enrichment of BC, demonstrating remarkable CT imaging efficacy in vivo. Together, these pH-/NIR-/GSH-responsive biodegradable BC composites could realize the integrated PTT/CDT/CT theranostics against breast carcinoma.
Collapse
Affiliation(s)
- Ruo-Yin Meng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Hong-Ying Xia
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Ying Zhao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Ying-Tong Ye
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, PR China
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| |
Collapse
|
18
|
Badparvar F, Poursattar Marjani A, Salehi R, Ramezani F, Beyrampour Basmenj H, Talebi M. Dual pH/redox-responsive size-switchable polymeric nano-carrier system for tumor microenvironment DTX release. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2220-2249. [PMID: 38944817 DOI: 10.1080/09205063.2024.2371203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024]
Abstract
Innovation chemotherapeutic nano drug delivery systems (NDDSs) with various pharmacological achievement have become one of the hopeful therapeutic strategies in cancer therapy. This study focused on low pH, and high levels of glutathione (GSH) as two prominent characteristics of the tumor microenvironment (TME) to design a novel TME-targeted pH/redox dual-responsive P (AMA-co-DMAEMA)-b-PCL-SS-PCL-b-P (AMA-co-DMAEMA) nanoparticles (NPs) for deep tumor penetration and targeted anti-tumor therapy. The positively charged NPs exhibit strong electrostatic interactions with negatively charged cell membranes, significantly enhancing cellular uptake. Moreover, these NPs possess the unique size-shrinkable property, transitioning from 98.24 ± 27.78 to 45.56 ± 20.62 nm within the TME. This remarkable size change fosters an impressive uptake of approximately 100% by MDA-MB-231 cells within just 30 min, thereby greatly improving drug delivery efficiency. This size switchability enables passive targeting through the enhanced permeability and retention (EPR) effect, facilitating deep penetration into tumors. The NPs also demonstrate improved pH/redox-triggered drug release (∼70% at 24 h) within the TME and exhibit no toxicity in cell viability test. The cell cycle results of treated cells with docetaxel (DTX)-loaded NPs revealed G2/M (84.6 ± 1.16%) arrest. The DTX-loaded NPs showed more apoptosis (62.6 ± 3.7%) than the free DTX (51.8 ± 3.2%) in treated cells. The western blot and RT-PCR assays revealed that apoptotic genes and proteins expression of treated cells were significantly upregulated with the DTX-loaded NPs vs. the free DTX (Pvalue<.001). In conclusion, these findings suggest that this novel-engineered NPs holds promise as a TME-targeted NDDS.
Collapse
Affiliation(s)
- Fahimeh Badparvar
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | | | - Roya Salehi
- Clinical Research Development Unite of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramezani
- Department of Molecular Mediciene, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Beyrampour Basmenj
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Department of Applied Cell Science, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Zhu S, Huo L, Zeng J, Chen R, Sun Y, Tan M, Fan M, Liu M, Zhao J, Huang G, Wang Y, Xiao Z, Zhao Z. Differentiated management of ROS level in tumor and kidney to alleviate Cis-platinum induced acute kidney injury with improved efficacy. J Nanobiotechnology 2024; 22:436. [PMID: 39044240 PMCID: PMC11267679 DOI: 10.1186/s12951-024-02710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Cisplatin (DDP) is a prevalent chemotherapeutic agent used in tumor therapy, yet DDP-induced acute kidney injury (AKI) severely limits its clinical application. Antioxidants as reactive oxygen species (ROS) scavengers can circumvent this adverse effect while leading to the decrease of efficacy to tumor. Herein, we report ultrasmall ruthenium nanoparticles (URNPs) as switchable ROS scavengers/generators to alleviate DDP-induced AKI and improve its therapeutic efficacy. In the physiological environment of the kidney, URNPs mimic multi-enzyme activities, such as superoxide dismutase and catalase, effectively protecting the renal cell and tissue by down-regulating the increased ROS level caused by DDP and alleviating AKI. Specifically, URNPs are oxidized by high levels of H2O2 in the tumor microenvironment (TME), resulting in the generation of oxygen vacancies and Ru3+/Ru4+ ions. This unique structure transformation endows URNPs to generate singlet oxygen (1O2) under laser irradiation and hydroxyl radicals (∙OH) through a Fenton-like reaction in tumor cell and tissue. The simultaneous generation of multifarious ROS effectively improves the efficacy of DDP in vitro and in vivo. This TME-responsive ROS scavenger/generator acts as an adjuvant therapeutic agent to minimize side effects and improve the efficacy of chemotherapy drugs, providing a new avenue to chemotherapy and facilitating clinical tumor therapy.
Collapse
Affiliation(s)
- Shiqi Zhu
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Linlin Huo
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Zeng
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yutong Sun
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Mingya Tan
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Mengke Fan
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Meiling Liu
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jiayi Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Guoming Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhibo Xiao
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Zhenghuan Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
20
|
Chen M, Xu C, Wang C, Huang N, Bian Z, Xiao Y, Ruan J, Sun F, Shi S. Three Birds with One Stone: Copper Ions Assisted Synergistic Cuproptosis/Chemodynamic/Photothermal Therapy by a Three-Pronged Approach. Adv Healthc Mater 2024:e2401567. [PMID: 38962848 DOI: 10.1002/adhm.202401567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Copper is indispensable to organisms, while its homeostatic imbalance may interference normal cellular physiological processes and even induce cell death. Artificially regulating cellular copper content provides a viable strategy to activate antineoplastic effect. In light of this, a copper ions homeostasis perturbator (CuP-CL) with cinnamaldehyde (Cin) packaging and thermosensitive liposome coating is reported. Following laser exposure, the doping of Cu2+ in polydopamine initiates enhanced photothermal therapy (PTT) and unlocks the outer layer of liposome, leading to the release of copper ions and Cin in tumor microenvironment with mild acidity and high glutathione (GSH) levels. The liberative Cu2+ can evoke cuproptosis and chemodynamic therapy (CDT). Meanwhile, leveraging the merits of H2O2 supply and GSH consumption, Cin serves as a tumor microenvironment regulator to amplify Cu2+ mediated cuproptosis and CDT. Additionally, the positive feedback effects of "laser-triggered PTT, PTT accelerates reactive oxygen species (ROS) generation, ROS amplifies lipid peroxide (LPO) accumulation, LPO mediates heat shock proteins (HSPs) clearance, down-regulated HSPs promote PTT" entailed the overall benefit to therapeutic outcomes. Both in vitro and in vivo results corroborate the remarkable antineoplastic performance of CuP-CL by the synergy of cuproptosis/CDT/PTT. Collectively, based on the three-pronged approach, this work plots a viable multimodal regimen for cancer therapy.
Collapse
Affiliation(s)
- Mengyao Chen
- School of Chemical Science and Engineering, Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200092, P. R. China
| | - Chang Xu
- School of Chemical Science and Engineering, Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200092, P. R. China
| | - Chunhui Wang
- School of Chemical Science and Engineering, Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200092, P. R. China
| | - Nan Huang
- School of Chemical Science and Engineering, Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200092, P. R. China
| | - Zhixuan Bian
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yixuan Xiao
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Juan Ruan
- School of Chemical Science and Engineering, Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200092, P. R. China
| | - Fenyong Sun
- School of Chemical Science and Engineering, Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200092, P. R. China
| | - Shuo Shi
- School of Chemical Science and Engineering, Department of Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
21
|
Jin Z, Wang Y, Han M, Wang L, Lin F, Jia Q, Ren W, Xu J, Yang W, Zhao GA, Sun X, Jing C. Tumor microenvironment-responsive size-changeable and biodegradable HA-CuS/MnO 2 nanosheets for MR imaging and synergistic chemodynamic therapy/phototherapy. Colloids Surf B Biointerfaces 2024; 238:113921. [PMID: 38631280 DOI: 10.1016/j.colsurfb.2024.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Tumor microenvironment (TME)-responsive size-changeable and biodegradable nanoplatforms for multimodal therapy possess huge advantages in anti-tumor therapy. Hence, we developed a hyaluronic acid (HA) modified CuS/MnO2 nanosheets (HCMNs) as a multifunctional nanoplatform for synergistic chemodynamic therapy (CDT)/photothermal therapy (PTT)/photodynamic therapy (PDT). The prepared HCMNs exhibited significant NIR light absorption and photothermal conversion efficiency because of the densely deposited ultra-small sized CuS nanoparticles on the surface of MnO2 nanosheet. They could precisely target the tumor cells and rapidly decomposed into small sized nanostructures in the TME, and then efficiently promote intracellular ROS generation through a series of cascade reactions. Moreover, the local temperature elevation induced by photothermal effect also promote the PDT based on CuS nanoparticles and the Fenton-like reaction of Mn2+, thereby enhancing the therapeutic efficiency. Furthermore, the T1-weighted magnetic resonance (MR) imaging was significantly enhanced by the abundant Mn2+ ions from the decomposition process of HCMNs. In addition, the CDT/PTT/PDT synergistic therapy using a single NIR light source exhibited considerable anti-tumor effect via in vitro cell test. Therefore, the developed HCMNs will provide great potential for MR imaging and multimodal synergistic cancer therapy.
Collapse
Affiliation(s)
- Zhen Jin
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Neural Sensor and Control Engineering Technology Research Center, Xinxiang, Henan 453003, China.
| | - Yunkai Wang
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Miaomiao Han
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Li Wang
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Fei Lin
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Qianfang Jia
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wu Ren
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jiawei Xu
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wenhao Yang
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Guo-An Zhao
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Xuming Sun
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China; Xinxiang Neural Sensor and Control Engineering Technology Research Center, Xinxiang, Henan 453003, China.
| | - Changqin Jing
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| |
Collapse
|
22
|
Song L, Luo K, Liu C, Zhao H, Ye L, Wang H. A bismuth-based double-network hydrogel-mediated synergistic photothermal-chemodynamic therapy for accelerated wound healing. J Mater Chem B 2024; 12:4975-4987. [PMID: 38687157 DOI: 10.1039/d4tb00121d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Multidrug-resistant bacterial infections present a significant challenge to wound healing. Non-antibiotic approaches such as photothermal therapy (PTT) and chemodynamic therapy (CDT) are promising but have suboptimal anti-bacterial efficacy. Herein, we developed a green bismuth-based double-network hydrogel (Bi@P-Cu) as a PTT/CDT synergistic platform for accelerated drug-resistant bacteria-infected wound healing. Bismuth (Bi) nanoparticles fabricated using a microwave method were used as a highly efficient and biocompatible PTT agent while the integration of a small amount of CDT agent Cu2+ endowed the hydrogel with excellent mechanical and self-healing properties, markedly increased photothermal efficiency, promoted cell migration ability, and negligible toxicity. Importantly, PTT enhanced the production of hydroxyl radicals in CDT and the destruction of bacterial cell membranes, which in turn enhanced the thermal sensitivity of bacteria. This synergistic anti-bacterial effect, together with the demonstrated capability to promote angiogenesis and anti-inflammation as well as enhanced fibroblast proliferation, led to accelerated wound healing in a full-thickness mouse model of resistant bacterial infection. This study provides an effective and safe strategy to eliminate drug-resistant bacteria and accelerate wound healing through green, non-antibiotic, double-network hydrogel-mediated synergistic PTT and CDT.
Collapse
Affiliation(s)
- Linyan Song
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| | - Kui Luo
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
- Core Facility Center, Capital Medical University, Beijing, 100069, P. R. China
| | - Chen Liu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| | - Huanying Zhao
- Core Facility Center, Capital Medical University, Beijing, 100069, P. R. China
| | - Ling Ye
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| | - Hao Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.
| |
Collapse
|
23
|
Yang Y, Zhang X, Bai Z, Cui Z, Liang W, Zhang J, Li K, Shi M, Liu Z, Wang J, Li J. Progressive enhanced photodynamic therapy and enhanced chemotherapy fighting against malignant tumors with sequential drug release. Biomed Mater 2024; 19:045004. [PMID: 38697132 DOI: 10.1088/1748-605x/ad46bb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
During the process of malignant tumor treatment, photodynamic therapy (PDT) exerts poor efficacy due to the hypoxic environment of the tumor cells, and long-time chemotherapy reduces the sensitivity of tumor cells to chemotherapy drugs due to the presence of drug-resistant proteins on the cell membranes for drug outward transportation. Therefore, we reported a nano platform based on mesoporous silica coated with polydopamine (MSN@PDA) loading PDT enhancer MnO2, photosensitizer indocyanine green (ICG) and chemotherapeutic drug doxorubicin (DOX) (designated as DMPIM) to achieve a sequential release of different drugs to enhance treatment of malignant tumors. MSN was first synthesized by a template method, then DOX was loaded into the mesoporous channels of MSN, and locked by the PDA coating. Next, ICG was modified by π-π stacking on PDA, and finally, MnO2layer was accumulated on the surface of DOX@MSN@PDA- ICG@MnO2, achieving orthogonal loading and sequential release of different drugs. DMPIM first generated oxygen (O2) through the reaction between MnO2and H2O2after entering tumor cells, alleviating the hypoxic environment of tumors and enhancing the PDT effect of sequentially released ICG. Afterwards, ICG reacted with O2in tumor tissue to produce reactive oxygen species, promoting lysosomal escape of drugs and inactivation of p-glycoprotein (p-gp) on tumor cell membranes. DOX loaded in the MSN channels exhibited a delay of approximately 8 h after ICG release to exert the enhanced chemotherapy effect. The drug delivery system achieved effective sequential release and multimodal combination therapy, which achieved ideal therapeutic effects on malignant tumors. This work offers a route to a sequential drug release for advancing the treatment of malignant tumors.
Collapse
Affiliation(s)
- Yibo Yang
- Nano-Biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei, Province 066000, People's Republic of China
| | - Xin Zhang
- Nano-Biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei, Province 066000, People's Republic of China
| | - Zhimin Bai
- Nano-Biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei, Province 066000, People's Republic of China
| | - Zutong Cui
- Nano-Biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei, Province 066000, People's Republic of China
| | - Wenming Liang
- Nano-Biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei, Province 066000, People's Republic of China
| | - Jia Zhang
- Nano-Biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei, Province 066000, People's Republic of China
| | - Kun Li
- Nano-Biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei, Province 066000, People's Republic of China
| | - Ming Shi
- Nano-Biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei, Province 066000, People's Republic of China
- Qinhuangdao Biopha Biotechnology Co., Ltd, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Zhiwei Liu
- Nano-Biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei, Province 066000, People's Republic of China
- Qinhuangdao Biopha Biotechnology Co., Ltd, Qinhuangdao, Hebei Province 066000, People's Republic of China
| | - Jidong Wang
- Nano-Biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei, Province 066000, People's Republic of China
| | - Jian Li
- Nano-Biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei, Province 066000, People's Republic of China
| |
Collapse
|
24
|
Xu Z, Jiang J, Li Y, Hu T, Gu J, Zhang P, Fan L, Xi J, Han J, Guo R. Shape-Regulated Photothermal-Catalytic Tumor Therapy Using Polydopamine@Pt Nanozymes with the Elicitation of an Immune Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309096. [PMID: 38054612 DOI: 10.1002/smll.202309096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Recently, nanozyme-based photothermal-catalytic therapy has emerged as a promising strategy for antitumor treatment. Extensive research has focused on optimizing the catalytic activity and photothermal conversion performance of nanozymes through size, morphology, and surface property regulations. However, the biological effects of nanozymes, such as cellular uptake and cytotoxicity, resulting from their physicochemical properties, remain largely unexplored. In this study, two types of polydopamine/platinum (PDA@Pt) nanozymes, flower-like (FPDA@Pt) and mesoporous spherical-like (MPDA@Pt), to comprehensively compare their enzyme-mimicking activity, photothermal conversion capacity, and antitumor efficiency are designed. These findings revealed that FPDA@Pt exhibited superior peroxidase-like activity and higher photothermal conversion efficiency compared to MPDA@Pt. This led to enhanced production of reactive oxygen species (ROS) and increased heat generation at tumor sites. Importantly, it is observed thatthe flower-like structure of FPDA@Pt facilitated enhanced cellular uptake, leading to an increased accumulation of nanozymes within tumor cells. Furthermore, the light irradiation on tumors also triggered a series of anti-tumor immune responses, further enhancing the therapeutic efficacy. This work provides a possible design orientation for nanozyme-based photothermal-catalytic tumor therapy, highlighting the importance of considering the physicochemical properties of nanozymes to optimize their therapeutic potential in antitumor strategies.
Collapse
Affiliation(s)
- Zhilong Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jian Jiang
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
- Central LAB, Binhai County People's Hospital, Binhai, Jiangsu, 224500, P. R. China
| | - Yanan Li
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, Jiangsu, 225127, P. R. China
| | - Ting Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jiake Gu
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Peiying Zhang
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Juqun Xi
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
25
|
Li Y, Qian L, Yang Z, Li S, Wu A, Wang X. Photothermal and ferroptosis synergistic therapy for liver cancer using iron-doped polydopamine nanozymes. Colloids Surf B Biointerfaces 2024; 239:113911. [PMID: 38714079 DOI: 10.1016/j.colsurfb.2024.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/09/2024]
Abstract
An innovative nanozyme, iron-doped polydopamine (Fe-PDA), which integrates iron ions into a PDA matrix, conferred peroxidase-mimetic activity and achieved a substantial photothermal conversion efficiency of 43.5 %. Fe-PDA mediated the catalysis of H2O2 to produce toxic hydroxyl radicals (•OH), thereby facilitating lipid peroxidation in tumour cells and inducing ferroptosis. Downregulation of solute carrier family 7 no. 11 (SLC7A11) and solute carrier family 3 no. 2 (SLC3A2) in System Xc- resulted in decreased intracellular glutathione (GSH) production and inactivation of the nuclear factor erythroid 2-related factor 2 (NRF2)-glutathione peroxidase 4 (GPX4) pathway, contributing to ferroptosis. Moreover, the application of photothermal therapy (PTT) enhanced the effectiveness of chemodynamic therapy (CDT), accelerating the Fenton reaction for targeted tumour eradication while sparing adjacent non-cancerous tissues. In vivo experiments revealed that Fe-PDA significantly hampered tumour progression in mice, emphasizing the potential of the dual-modality treatment combining CDT and PTT for future clinical oncology applications.
Collapse
Affiliation(s)
- Yunchun Li
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Linqun Qian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhouping Yang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Siyu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan 611130, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
26
|
Liu S, Ding R, Yuan J, Zhang X, Deng X, Xie Y, Wang Z. Melanin-Inspired Composite Materials: From Nanoarchitectonics to Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3001-3018. [PMID: 38195388 DOI: 10.1021/acsami.3c14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Synthetic melanin is a mimic of natural melanin analogue with intriguing properties such as metal-ion chelation, redox activity, adhesion, and broadband absorption. Melanin-inspired composite materials are formulated by assembly of melanin with other types of inorganic and organic components to target, combine, and build up the functionality, far beyond their natural capabilities. Developing efficient and universal methodologies to prepare melanin-based composite materials with unique functionality is vital for their further applications. In this review, we summarize three types of synthetic approaches, predoping, surface engineering, and physical blending, to access various melanin-inspired composite materials with distinctive structure and properties. The applications of melanin-inspired composite materials in free radical scavenging, bioimaging, antifouling, and catalytic applications are also reviewed. This review also concludes current challenges that must be addressed and research opportunities in future studies.
Collapse
Affiliation(s)
- Shang Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ran Ding
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Jiaxin Yuan
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xicheng Zhang
- The Department of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Zhao Wang
- Key Laboratory of Polymeric Material Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| |
Collapse
|
27
|
Wang R, Huang Z, Xiao Y, Huang T, Ming J. Photothermal therapy of copper incorporated nanomaterials for biomedicine. Biomater Res 2023; 27:121. [PMID: 38001505 PMCID: PMC10675977 DOI: 10.1186/s40824-023-00461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Studies have reported on the significance of copper incorporated nanomaterials (CINMs) in cancer theranostics and tissue regeneration. Given their unique physicochemical properties and tunable nanostructures, CINMs are used in photothermal therapy (PTT) and photothermal-derived combination therapies. They have the potential to overcome the challenges of unsatisfactory efficacy of conventional therapies in an efficient and non-invasive manner. This review summarizes the recent advances in CINMs-based PTT in biomedicine. First, the classification and structure of CINMs are introduced. CINMs-based PTT combination therapy in tumors and PTT guided by multiple imaging modalities are then reviewed. Various representative designs of CINMs-based PTT in bone, skin and other organs are presented. Furthermore, the biosafety of CINMs is discussed. Finally, this analysis delves into the current challenges that researchers face and offers an optimistic outlook on the prospects of clinical translational research in this field. This review aims at elucidating on the applications of CINMs-based PTT and derived combination therapies in biomedicine to encourage future design and clinical translation.
Collapse
Affiliation(s)
| | | | | | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
28
|
Wang TH, Shen MY, Yeh NT, Chen YH, Hsu TC, Chin HY, Wu YT, Tzang BS, Chiang WH. Photothermal nanozymes to self-augment combination cancer therapy by dual-glutathione depletion and hyperthermia/acidity-activated hydroxyl radical generation. J Colloid Interface Sci 2023; 650:1698-1714. [PMID: 37499626 DOI: 10.1016/j.jcis.2023.07.134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Chemodynamic therapy (CDT) has emerged as a promising strategy for tumor treatment. Nevertheless, the low Fenton catalytic efficiency and the high concentration of glutathione (GSH) in cancer cells largely decline antitumor efficacy of CDT. To self-augment antitumor effect of the CDT by combining with photothermal therapy (PTT), the unique photothermal nanozymes that doubly depleted GSH, and generated massive hydroxyl radicals (·OH) in the hyperthermia/acidity-activated manner were developed. Through the coordination of Fe3+ ions with PEGylated chitosan (PEG-CS)-modified polydopamine (PDA) nanoparticles, the attained Fe3+@PEG-CS/PDA nanozymes showed outstanding colloidal stability, photothermal conversion efficiency and acidity-triggered Fe3+ release. By GSH-mediated valence states transition of Fe3+ ions and Michael reaction between GSH and quinone-rich PDA, the nanozymes sufficiently executed dual depletion of GSH with the elevated temperature.Under mimic tumor acidity and near-infrared (NIR) irradiation condition, the endocytosed nanozymes effectively converted intracellular H2O2 into toxic ·OH upon amplified Fenton reaction, thereby potently killing 4T1 cancer cells and RAW 264.7 cells. Importantly, the nanozymes prominently suppressed 4T1 tumor growth in vivo and metastasis of cancer cells by CDT/PTT combination therapy without significant systemic toxicity. Our study provides novel visions in design of therapeutic nanozymes with great clinical translational prospect for tumor treatment.
Collapse
Affiliation(s)
- Tzu-Hao Wang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Ming-Yen Shen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Nien-Tzu Yeh
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Hsin Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Ting Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
29
|
Ding X, Wang Z, Yu Q, Michał N, Roman S, Liu Y, Peng N. Superoxide Dismutase-Like Regulated Fe/Ppa@PDA/B for Synergistically Targeting Ferroptosis/Apoptosis to Enhance Anti-Tumor Efficacy. Adv Healthc Mater 2023; 12:e2301824. [PMID: 37485811 DOI: 10.1002/adhm.202301824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Indexed: 07/25/2023]
Abstract
The cell apoptosis pathway of sonodynamic therapy (SDT) is usually blocked, resulting in limited therapeutic efficacy, therefore, the development of new methods for sensitizing targeted ferroptosis and promoting apoptosis is of great significance to improve the anti-tumor efficacy of SDT. Herein, mesoporous Fe3 O4 nanoparticles (NPs) are synthesized for loading pyropheophorbide-a (ppa), surface-coated by polydopamine (PDA) and further anchored with tumor-targeting moieties of biotin to obtain Fe/ppa@PDA/B NPs. Fe/ppa@PDA/B displayes pH/ultrasound (US) responsive release properties, and magnetic resonance imaging (MRI) functions. Moreover, Fe3 O4 NPs of Fe/ppa@PDA/B as the Fe source for ferroptosis, enhances ferroptosis sensitivity by consuming glutathione (GSH) and producing hydroxyl radical (OH). The quinone groups of PDA layer on Fe/ppa@PDA/B own free electrons, which led to effective superoxide dismutase (SOD) action through superoxide anion (O2 - ) disproportionation to hydrogen peroxide (H2 O2 ) and oxygen (O2 ), thus, overcame hypoxia of SDT and promoted ·OH generation by Fe ions under US trigger, synergistically improves ferroptosis and apoptosis to enhance the anti-tumor efficacy of SDT both in vitro and in vivo. The anti-tumor strategy of synergistic apoptosis and ferroptosis induce by GSH depletion and self-sufficient O2 regulated by SOD provides a new idea for enhancing SDT efficacy.
Collapse
Affiliation(s)
- Xin Ding
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, P. R. China
| | - Zidong Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, P. R. China
| | - Qiying Yu
- Central laboratory, Tumor Hospital Affiliated to Nantong University, Nantong, 226361, P. R. China
| | - Nowicki Michał
- Institute of Metrology and Biomedical Engineering Faculty of Mechatronics, Warsaw University of Technology, Warsaw, 00-661, Poland
| | - Szewczyk Roman
- Institute of Metrology and Biomedical Engineering Faculty of Mechatronics, Warsaw University of Technology, Warsaw, 00-661, Poland
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
- Belt and Road Joint Laboratory on Measurement and Control Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
30
|
Yan Z, Sun M, Wang M, Yin C, Wei ZJ, Zhang Z, Wang Y, Wang W, Yuan Z. Single-laser excitation synergistic photo- and chemodynamic therapy system based on persistent luminescence nanoparticles. J Control Release 2023; 364:S0168-3659(23)00704-6. [PMID: 39491174 DOI: 10.1016/j.jconrel.2023.10.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Photodynamic and photothermal therapy (PDT and PTT) have been widely used in tumor treatment researches owe to its advantages of spatiotemporal controlliability and non-invasiveness. Combining two phototherapy strategies together and/or with chemodynamic therapy (CDT) could achieve better therapeutic efficiency, but the resulting inconvenient dual-laser irradiation and the potential skin toxicity limit its development. Moreover, the lack of tumor-specificity causes side-effects to normal tissues. Therefore, shortening the irradiation time, or integrating two lasers, and increasing tumor specificity are necessary to reduce side effects. Herein, we developed a tumor microenvironment responsive one-laser-excited PDT/PTT/CDT synergistic therapeutic nanosystem ZPPSC (refers to ZGGC-PDA-PEI-Si-Pc-Cu) for precise tumor phototherapy. In this nanosystem, the simultaneous PTT and PDT activation using a single laser, enhancing phototherapy efficiency while reducing phototoxicity were achieved. Specifically, persistent luminescence nanoparticle ZnGa1.6Ge0.2O4:Cr (ZGGC) is coated with polydopamine (PDA) through self-polymerization of dopamine, modified with polyethyleneimine (PEI), Si-Pc, and adsorbed with Cu2+. Cu2+ quenches the persistent luminescence (PersL) in physiological environment, and could be reduced to Cu+ under the excess GSH in tumor cells, resulting in removing from nanosystem. Whereafter, PersL is restored, and Fenton-like reaction between Cu+ and overexpressed H2O2 is triggered to generate ·OH for CDT therapy. Under single 808-nm irradiation, PDA will be irradiated to perform PTT, and the opening persistent luminescence could irradiate photosensitizers for PDT and continues to stimulate them even after the laser stops, reducing external excitation time. The in vivo results shown that ZPPSC exhibit ideal PDT performance, and increased local temperature close to 60 °C. Most importantly, the tumor inhibition rate by combined PTT, PDT, CDT with 5-min 808-nm laser irradiation is 99%, and even one mouse was completely cured with the bearing tumor completely disappeared. By using this nanosystem, PDT and PTT were achieved by only on laser with relatively short irradiation time. Moreover, the weak tissue penetration of the 660-nm PS excitation source was also addressed. Our design achieves tumor-specific one-laser three-mode phototherapy with shortened irradiation time, enhancing therapy effectiveness while minimizing side effects. These results exhibit great therapeutic outcomes of ZPPSC for precious tumor phototherapy.
Collapse
Affiliation(s)
- Zichao Yan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengjie Sun
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mingzhu Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chang Yin
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zi-Jin Wei
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhouyu Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yifei Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; C400001ollaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
31
|
Liu T, Guo C, Xu S, Hu G, Wang L. A Novel Strategy to Improve Tumor Targeting of Hydrophilic Drugs and Nanoparticles for Imaging Guided Synergetic Therapy. Adv Healthc Mater 2023; 12:e2300883. [PMID: 37437241 DOI: 10.1002/adhm.202300883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The fast renal clearance of hydrophilic small molecular anticancer drugs and ultrasmall nanoparticles (NPs) results in the low utilization rate and certain side effects, thus improving the tumor targeting is highly desired but faces great challenges. A novel and general β-cyclodextrin (CD) aggregation-induced assembly strategy to fabricate doxorubicin (DOX) and CD-coated NPs (such as Au) co-encapsulated pH-responsive nanocomposites (NCs) is proposed. By adding DOX×HCl and reducing pH in a reversed microemulsion system, hydrophilic CD-coated AuNPs rapidly assemble into large NCs. Then in situ polymerization of dopamine and sequentially coordinating with Cu2+ on the surface of NCs provide extra weak acid responsiveness, chemodynamic therapy (CDT), and improved biocompatibility as well as stability. The subsequent tumor microenvironment responsive dissociation notably improves their passive tumor targeting, bioavailability, imaging, and therapeutic capabilities, as well as facilitates their internalization by tumor cells and metabolic clearance, thereby reducing side effects. The combination of polymerized dopamine and assembled AuNPs reinforces photothermal capability, thus further boosting CDT through thermally amplifying Cu-catalyzed Fenton-like reaction. Both in vitro and in vivo studies confirm the desirable outcomes of these NCs as photoacoustic imaging guided trimodal (thermally enhanced CDT, photothermal therapy, and chemotherapy) synergistic tumor treatment agents with minimal systemic toxicity.
Collapse
Affiliation(s)
- Taoxia Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chang Guo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gaofei Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
32
|
Zhuo X, Liu Z, Aishajiang R, Wang T, Yu D. Recent Progress of Copper-Based Nanomaterials in Tumor-Targeted Photothermal Therapy/Photodynamic Therapy. Pharmaceutics 2023; 15:2293. [PMID: 37765262 PMCID: PMC10534922 DOI: 10.3390/pharmaceutics15092293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology, an emerging and promising therapeutic tool, may improve the effectiveness of phototherapy (PT) in antitumor therapy because of the development of nanomaterials (NMs) with light-absorbing properties. The tumor-targeted PTs, such as photothermal therapy (PTT) and photodynamic therapy (PDT), transform light energy into heat and produce reactive oxygen species (ROS) that accumulate at the tumor site. The increase in ROS levels induces oxidative stress (OS) during carcinogenesis and disease development. Because of the localized surface plasmon resonance (LSPR) feature of copper (Cu), a vital trace element in the human body, Cu-based NMs can exhibit good near-infrared (NIR) absorption and excellent photothermal properties. In the tumor microenvironment (TME), Cu2+ combines with H2O2 to produce O2 that is reduced to Cu1+ by glutathione (GSH), causing a Fenton-like reaction that reduces tumor hypoxia and simultaneously generates ROS to eliminate tumor cells in conjunction with PTT/PDT. Compared with other therapeutic modalities, PTT/PDT can precisely target tumor location to kill tumor cells. Moreover, multiple treatment modalities can be combined with PTT/PDT to treat a tumor using Cu-based NMs. Herein, we reviewed and briefly summarized the mechanisms of actions of tumor-targeted PTT/PDT and the role of Cu, generated from Cu-based NMs, in PTs. Furthermore, we described the Cu-based NMs used in PTT/PDT applications.
Collapse
Affiliation(s)
| | | | | | - Tiejun Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| |
Collapse
|
33
|
Chen N, Li Y, Li H, Wang Y, Zeng Y, Zhang M, Pan Z, Chen Z, Liang W, Huang J, Zhang K, Liu X, He Y. Multifunctional CuFe 2O 4@HA as a GSH-depleting nanoplatform for targeted photothermal/enhanced-chemodynamic synergistic therapy. Colloids Surf B Biointerfaces 2023; 229:113445. [PMID: 37441838 DOI: 10.1016/j.colsurfb.2023.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Chemodynamic therapy (CDT), which converts overexpressed hydrogen peroxide (H2O2) in tumor cells to hydroxyl radicals (•OH) by Fenton reactions, is considered a prospective strategy in anticancer therapy. However, the high level of glutathione (GSH) and poor Fenton catalytic efficiency contribute to the suboptimal efficiency of CDT. Herein, we present a multifunctional nanoplatform (CuFe2O4@HA) that can induce GSH depletion and combine with photothermal therapy (PTT) to enhance antitumor efficacy. CuFe2O4@HA nanoparticles could release Cu2+ and Fe3+ after entering tumor cells by targeting hyaluronic acid (HA). Subsequently, Cu2+ and Fe3+ were reduced to Cu+ and Fe2+ by GSH, where Cu+/Fe2+ significantly catalyzed H2O2 to produce a higher level of •OH, and the depletion of GSH disrupted the antioxidant capacity of the tumor. Therefore, depleting GSH substantially enhances the level of •OH in tumor cells. In addition, CuFe2O4@HA nanoparticles have considerable absorption in the near-infrared (NIR) region, which can stimulate excellent PTT effects. More importantly, the heat generated by PTT can further enhance the Fenton catalysis efficiency. In vitro and in vivo experiments have demonstrated the excellent tumor-killing effect of CuFe2O4@HA nanoparticles. This strategy overcomes the problem of insufficient CDT efficacy caused by GSH overexpression and poor catalytic efficiency. Moreover, this versatile nanoplatform provides a reference for self-enhanced CDT and PTT/CDT synergistic targeted therapy.
Collapse
Affiliation(s)
- Niping Chen
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yushan Li
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haihong Li
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yakun Wang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Mingxia Zhang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenxing Pan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zefeng Chen
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanting Liang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Junhao Huang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Zhang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xujie Liu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yan He
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
34
|
Gao L, Zhang A. Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations. Front Immunol 2023; 14:1236063. [PMID: 37600774 PMCID: PMC10433393 DOI: 10.3389/fimmu.2023.1236063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Copper, a transition metal, serves as an essential co-factor in numerous enzymatic active sites and constitutes a vital trace element in the human body, participating in crucial life-sustaining activities such as energy metabolism, antioxidation, coagulation, neurotransmitter synthesis, iron metabolism, and tetramer deposition. Maintaining the equilibrium of copper ions within biological systems is of paramount importance in the prevention of atherosclerosis and associated cardiovascular diseases. Copper induces cellular demise through diverse mechanisms, encompassing reactive oxygen species responses, apoptosis, necrosis, pyroptosis, and mitochondrial dysfunction. Recent research has identified and dubbed a novel regulatory cell death modality-"cuprotosis"-wherein copper ions bind to acylated proteins in the tricarboxylic acid cycle of mitochondrial respiration, resulting in protein aggregation, subsequent downregulation of iron-sulfur cluster protein expression, induction of proteotoxic stress, and eventual cell death. Scholars have synthesized copper complexes by combining copper ions with various ligands, exploring their significance and applications in cancer therapy. This review comprehensively examines the multiple pathways of copper metabolism, copper-induced regulatory cell death, and the current status of copper complexes in cancer treatment.
Collapse
Affiliation(s)
- Lei Gao
- Medical Imaging Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, China
| | - Anqi Zhang
- Oncology Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, China
| |
Collapse
|
35
|
Liu L, Zhang H, Xing S, Zhang Y, Shangguan L, Wei C, Peng F, Liu X. Copper-Zinc Bimetallic Single-Atom Catalysts with Localized Surface Plasmon Resonance-Enhanced Photothermal Effect and Catalytic Activity for Melanoma Treatment and Wound-Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207342. [PMID: 37096842 PMCID: PMC10288238 DOI: 10.1002/advs.202207342] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Nanomaterials with photothermal combined chemodynamic therapy (PTT-CDT) have attracted the attention of researchers owing to their excellent synergistic therapeutic effects on tumors. Thus, the preparation of multifunctional materials with higher photothermal conversion efficiency and catalytic activity can achieve better synergistic therapeutic effects for melanoma. In this study, a Cu-Zn bimetallic single-atom (Cu/PMCS) is constructed with augmented photothermal effect and catalytic activity due to the localized surface plasmon resonance (LSPR) effect. Density functional theory calculations confirmed that the enhanced photothermal effect of Cu/PMCS is due to the appearance of a new d-orbital transition with strong spin-orbit coupling and the induced LSPR. Additionally, Cu/PMCS exhibited increased catalytic activity in the Fenton-like reaction and glutathione depletion capacity, further enhanced by increased temperature and LSPR. Consequently, Cu/PMCS induced better synergistic anti-melanoma effects via PTT-CDT than PMCS in vitro and in vivo. Furthermore, compared with PMCS, Cu/PMCS killed bacteria more quickly and effectively, thus facilitating wound healing owing to the enhanced photothermal effect and slow release of Cu2+ . Cu/PMCS promoted cell migration and angiogenesis and upregulated the expression of related genes to accelerate wound healing. Cu/PMCS has potential applications in treating melanoma and repairing wounds with its antitumor, antibacterial, and wound-healing properties.
Collapse
Affiliation(s)
- Lidan Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of ChineseAcademy of SciencesBeijing100049China
| | - Haifeng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024China
| | - Shun Xing
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of ChineseAcademy of SciencesBeijing100049China
| | - Yu Zhang
- Medical Research InstituteDepartment of OrthopedicsGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Li Shangguan
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of ChineseAcademy of SciencesBeijing100049China
| | - Chao Wei
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| | - Feng Peng
- Medical Research InstituteDepartment of OrthopedicsGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of ChineseAcademy of SciencesBeijing100049China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024China
| |
Collapse
|
36
|
Cheng Q, Li Y, Huang W, Li K, Lan M, Wang B, Wang J, Song X. Copper coordination-based conjugated polymer nanoparticles for synergistic photodynamic and chemodynamic therapy. Chem Commun (Camb) 2023; 59:5886-5889. [PMID: 37097084 DOI: 10.1039/d3cc01107k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
In this work, we presented a copper coordination-based conjugated polymer nanoparticle (PPE-Cu NPs) for synergistic PDT/CDT. Upon irradiation, PPE-Cu NPs exhibited good singlet oxygen generation capability (ΦΔ = 0.33). Meanwhile, PPE-Cu NPs were able to generate ˙OH in the presence of GSH and H2O2. Cellular experiments demonstrated that PPE-Cu NPs can serve as effective agents for synergistic PDT/CDT therapy.
Collapse
Affiliation(s)
- Qiang Cheng
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yuyan Li
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ke Li
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Minhuan Lan
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Jianxiu Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
37
|
Shen P, Zhang X, Ding N, Zhou Y, Wu C, Xing C, Zeng L, Du L, Yuan J, Kang Y. Glutathione and Esterase Dual-Responsive Smart Nano-drug Delivery System Capable of Breaking the Redox Balance for Enhanced Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20697-20711. [PMID: 37083309 DOI: 10.1021/acsami.3c01155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Conventional chemotherapy usually fails to achieve its intended effect because of the poor water solubility, poor tumor selectivity, and low tumor accumulation of chemotherapy drugs. The systemic toxicity of chemotherapy agents is also a problem that cannot be ignored. It is expected that smart nano-drug delivery systems that are able to respond to tumor microenvironments will provide better therapeutic outcomes with decreased side effects of chemotherapeutics. Nano-drug delivery systems capable of breaking the redox balance can also increase the sensitivity of tumor cells to chemotherapeutics. In this study, using polymer-containing disulfide bonds, ester bonds, and d-α-tocopherol polyethylene glycol succinate (TPGS), which can amplify reactive oxygen species (ROS) in tumor cells, we have successfully prepared a smart glutathione (GSH) and esterase dual-responsive nano-drug delivery system (DTX@PAMBE-SS-TPGS NPs) with the ability to deplete GSH as well as amplify ROS and effectively release an encapsulated chemotherapy drug (DTX) in tumor cells. The potential of DTX@PAMBE-SS-TPGS NPs for enhanced antitumor effects was thoroughly evaluated using in vitro as well as in vivo experiments. Our research offers a promising strategy for maximizing the efficacy of tumor therapy.
Collapse
Affiliation(s)
- Ping Shen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinyi Zhang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ni Ding
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yinhua Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Changquan Wu
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chengyuan Xing
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ling Zeng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Lixin Du
- Department of Medical Imaging, Shenzhen Longhua District Central Hospital, Key Laboratory of Neuroimaging, Longhua District, Shenzhen 518107, China
| | - Jianpeng Yuan
- Department of Radiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
38
|
Bovine serum albumin-based and dual-responsive targeted hollow mesoporous silica nanoparticles for breast cancer therapy. Colloids Surf B Biointerfaces 2023; 224:113201. [PMID: 36822117 DOI: 10.1016/j.colsurfb.2023.113201] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Combination therapy is an effective way to alleviate the shortcoming of monotherapy and enhances therapeutic efficacy. Herein, a distinctive hollow mesoporous silica nanoparticle (HMSNs) encapsulated with folic acid-modified bovine serum albumin (BSA-FA), denoted as HBF, was engineered for tumor targeting and dual-responsive release of loaded-therapeutic agents MD (methylene blue (MB) and doxorubicin (DOX)). The BSA molecule as a ''gatekeeper'' prevents premature drug leakage and actively unloads the cargos through BSA detachment in response to intracellular glutathione (GSH). Folic acid (FA) promotes the specific intracellular delivery of the drug to folate receptor (FR)-expressing cancer cells to improve the efficacy of chemo-photodynamic therapy (PDT). In vitro drug release profiles showed that the drug carrier could achieve pH/redox-responsive drug release from MD@HBF owing to the cleavage of the imine bonds between HMSNs-CHO and BSA-FA and BSA intramolecular disulfide bond. Additionally, a series of biological evaluations, such as cell uptake experiments, toxicity experiments, and in vivo therapeutic assays indicated that MD@HBF possesses the features of accurately targeting FR-expressing 4T1 cells to induce cells apoptosis in vitro, exhibits outstanding tumor cell synergistic killing efficiency of chemo-photodynamic therapy (combination index CI = 0.325), and inhibits tumors growth. These results demonstrated that the strategy of combining HMSNs with stimuli-responsive biodegradable protein molecules could provide a new potential direction toward the ''on-demand'' drug release for precision chemo-photodynamic therapy in cancer treatment.
Collapse
|
39
|
Liu L, Zhang H, Peng L, Wang D, Zhang Y, Yan B, Xie J, Xing S, Peng F, Liu X. A copper-metal organic framework enhances the photothermal and chemodynamic properties of polydopamine for melanoma therapy. Acta Biomater 2023; 158:660-672. [PMID: 36640955 DOI: 10.1016/j.actbio.2023.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
The combination of photothermal treatment and chemodynamic therapy has attracted extensive attention for improving therapeutic effects and compensating the insufficiency of monotherapy. In this work, a copper-metal organic framework (Cu-BTC) was used to augment the photothermal effect of polydopamine (PDA) and endow it with a chemodynamic ability by constructing a Cu-BTC@PDA nanocomposite. Density functional theory calculations revealed that the plasmonic vibrations formed by the d-d transition of Cu at the Fermi level in Cu-BTC@PDA could enhance the photothermal performance of PDA. In addition, more Cu2+ released from Cu-BTC@PDA in the acidic microenvironment of the tumor was then reduced to Cu+ by glutathione (GSH) and further catalyzed H2O2 to generate more toxic hydroxyl radical (•OH), which synergized with photothermal treatment for melanoma therapy. Furthermore, Cu-BTC@PDA could quickly and effectively kill bacteria under the action of PTT, and the sustained release of Cu ions could contribute to the long-term and stable bacteriostatic ability of the material. This sustained release of Cu ions could also promote the cell migration and angiogenesis, and upregulate the expression of COL-, TGF-, and VEGF-related genes to accelerate wound healing. This multifunctional nanomaterial has potential application in the treatment of melanoma and repair of wounds. STATEMENT OF SIGNIFICANCE: We constructed a multifunctional nanoplatform (Cu-BTC@PDA) by two steps. This nanoplatform can not only perform cascade catalysis in the tumor microenvironment to generate more toxic hydroxyl radical (•OH), but also synergize with photothermal treatment for melanoma therapy. Additionally, Cu-BTC@PDA possesses enhanced photothermal performance through the plasmonic vibrations formed by the d-d transition of Cu at the Fermi level in Cu-BTC@PDA, which is revealed by DFT calculations. And Cu-BTC@PDA shows good antitumor, antibacterial, and wound healing properties in vivo and in vitro. Such a multifunctional nanomaterial has potential application in the treatment of melanoma and repair of wounds.
Collapse
Affiliation(s)
- Lidan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese, Academy of Sciences, Beijing 100049, China
| | - Haifeng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese, Academy of Sciences, Beijing 100049, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Luxi Peng
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200050, China
| | - Donghui Wang
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yu Zhang
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Bangcheng Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese, Academy of Sciences, Beijing 100049, China
| | - Juning Xie
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Shun Xing
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese, Academy of Sciences, Beijing 100049, China
| | - Feng Peng
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese, Academy of Sciences, Beijing 100049, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China.
| |
Collapse
|
40
|
Chen N, Wang Y, Zeng Y, Li Y, Pan Z, Li H, Chen J, Chen Z, Yuan J, Yan W, Lu YJ, Liu X, He Y, Zhang K. All-in-one CoFe 2O 4@Tf nanoagent with GSH depletion and tumor-targeted ability for mutually enhanced chemodynamic/photothermal synergistic therapy. Biomater Sci 2023; 11:828-839. [PMID: 36453535 DOI: 10.1039/d2bm01542k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the complex and severe tumor microenvironment, the antitumor efficiency of nanomedicines is significantly limited by their low-efficacy monotherapy, non-tumor targeting, and systemic toxicity. Herein, to achieve tumor-targeted and enhanced chemodynamic/photothermal therapy (CDT/PTT), we fabricated an "all-in-one" biocompatible transferrin-loaded cobalt ferrate nanoparticle (CoFe2O4@Tf (CFOT)) with multiple functions by a simple solvothermal method and the following transferrin (Tf) functionalization. Upon exposure to 808 nm laser irradiation, CFOT, as a novel photothermal agent, exhibited outstanding phototherapeutic activity because of its excellent photothermal conversion efficiency (η = 46.5%) for high-performance PTT. Moreover, CFOT with multiple redox pairs could efficiently convert endogenous H2O2 to hazardous hydroxyl radicals (˙OH) via Fenton reactions while scavenging overexpressed GSH in the tumor microenvironment to realize self-reinforcing CDT. Importantly, CFOT undergoes a promoted Fenton-type reaction upon increasing the temperature under a photothermal effect and could augment PTT by high-level ˙OH, exhibiting a considerably enhanced synergistic therapeutic effect. In vitro and in vivo experimental results demonstrated that CFOT has good potential as an "all-in-one" nanoagent to combine photothermal, chemodynamic, and tumor targeting for efficient tumor elimination.
Collapse
Affiliation(s)
- Niping Chen
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yakun Wang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yaoxun Zeng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yushan Li
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhenxing Pan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Haihong Li
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jingman Chen
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zefeng Chen
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiongpeng Yuan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Wen Yan
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yu-Jing Lu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xujie Liu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yan He
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Kun Zhang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China. .,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
41
|
Recent advances in multi-configurable nanomaterials for improved chemodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Liao K, Niu B, Dong H, He L, Zhou Y, Sun Y, Yang D, Wu C, Pan X, Quan G. A spark to the powder keg: Microneedle-based antitumor nanomedicine targeting reactive oxygen species accumulation for chemodynamic/photothermal/chemotherapy. J Colloid Interface Sci 2022; 628:189-203. [PMID: 35994900 DOI: 10.1016/j.jcis.2022.08.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
HYPOTHESIS Chemodynamic therapy (CDT) can efficiently kill cancer cells by producing hydroxyl radical (•OH), a kind of high-toxic reactive oxygen species (ROS), via Fenton or Fenton-like reactions. This study involved a versatile nanomedicine, MSN@DOX/GA-Fe/PDA (M@DGP), delivered via microneedles, which was expected to combine chemodynamic/photothermal/chemotherapy and efficiently increase ROS accumulation to achieve significant therapeutic efficacy against melanoma. EXPERIMENTS The composition of the synthesized nanoparticles was confirmed by a series of characterizations including transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential. The photothermal properties of the nanomedicine was evaluated via infrared imaging, and •OH-producing ability was evaluated by UV-Vis and electron spin resonance. The mechanisms of ROS accumulation were studied in B16 cells by detecting intracellular •OH, glutathione, and ROS levels. The drug-loaded microneedles (M@DGP-MNs) were prepared, and their morphology and mechanical strength were characterized. The in vivo antimelanoma effect and biosafety evaluation of the nanomedicine were investigated in tumor-bearing C57 mice. FINDINGS M@DGP was successfully prepared and could achieve ROS accumulation through a photothermal-enhanced Fenton reaction, polydopamine-induced glutathione consumption, and doxorubicin-mediated mitochondrial dysfunction which induced oxidative stress and apoptosis of tumor cells. M@DGP-MNs showed superior antitumor efficacy and good biosafety, providing a promising strategy for melanoma treatment.
Collapse
Affiliation(s)
- Kaixin Liao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Boyi Niu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haibing Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Luxuan He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan Yang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
43
|
Wang Z, Shi Y, Shi Y, Zhang J, Hao R, Zhang G, Zeng L. Ultrasmall Gold-Coated Mesoporous Polydopamine Nanoprobe to Enhance Chemodynamic Therapy by Self-Supplying H 2O 2 and Photothermal Stimulation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54478-54487. [PMID: 36448730 DOI: 10.1021/acsami.2c14031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tumor microenvironment (TME) responsive chemodynamic therapy (CDT) showed an important application in inhibiting tumor growth by producing the highly toxic hydroxyl radical (·OH), but insufficient hydrogen peroxide (H2O2) and overexpressed glutathione (GSH) limited its application. Herein, by integrating photothermal therapy (PTT) and CDT, a new kind of mesoporous polydopamine (MPDA)-based cascade-reaction nanoplatform (MPDA@AuNPs-Cu) was designed for enhanced antitumor therapy, in which ultrasmall gold nanoparticles (AuNPs) with glucose oxidase (GOx)-like activity were deposited on MPDA for providing H2O2, and Cu2+ was chelated for GSH-responsive Fenton-like reaction. It was demonstrated that the MPDA@AuNPs-Cu nanoprobe showed high photothermal conversion efficiency and excellent biocompatibility. Moreover, the MPDA@AuNPs-Cu nanoprobe exhibited strong ·OH generation because of H2O2 self-generation and photothermal stimulation. Importantly, compared with MPDA-Cu, MPDA@AuNPs-Cu exhibited enhanced in vitro and in vivo CDT/PTT performance, by which the tumor growth was completely inhibited, achieving TME-responsive antitumor efficacy.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Yuehua Shi
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Yu Shi
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Jiahe Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Ran Hao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Gangwan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Leyong Zeng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
44
|
Meng D, Yang S, Yang Y, Zhang L, Cui L. Synergistic chemotherapy and phototherapy based on red blood cell biomimetic nanomaterials. J Control Release 2022; 352:146-162. [PMID: 36252749 DOI: 10.1016/j.jconrel.2022.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Novel drug delivery systems (DDSs) have become the mainstay of research in targeted cancer therapy. By combining different therapeutic strategies, potential DDSs and synergistic treatment approaches are needed to effectively deal with evolving drug resistance and the adverse effects of cancer. Nowadays, developing and optimizing human cell-based DDSs has become a new research strategy. Among them, red blood cells can be used as DDSs as they significantly enhance the pharmacokinetics of the transported drug cargo. Phototherapy, as a novel adjuvant in cancer treatment, can be divided into photodynamic therapy and photothermal therapy. Phototherapy using erythropoietic nanocarriers to mimic the unique properties of erythrocytes and overcome the limitations of existing DDSs shows excellent prospects in clinical settings. This review provides an overview of the development of photosensitizers and research on bio-nano-delivery systems based on erythrocytes and erythrocyte membranes that are used in achieving synergistic outcomes during phototherapy/chemotherapy.
Collapse
Affiliation(s)
- Di Meng
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR China
| | - Shuoye Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, PR China.
| | - Yanan Yang
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR China
| | - Lu Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, PR China
| | - Lan Cui
- College of Bioengineering, Henan University of Technology, Zhengzhou, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, PR China
| |
Collapse
|
45
|
Tian L, Li X, Ji H, Yu Q, Yang M, Guo L, Huang L, Gao W. Melanin-like nanoparticles: advances in surface modification and tumour photothermal therapy. J Nanobiotechnology 2022; 20:485. [PMCID: PMC9675272 DOI: 10.1186/s12951-022-01698-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
Currently, tumor treatments are characterized by intelligence, diversity and personalization, but the therapeutic reagents used are often limited in clinical efficacy due to problems with water solubility, targeting, stability and multidrug resistance. To remedy these shortcomings, the application of multifunctional nanotechnology in the biomedical field has been widely studied. Synthetic melanin nanoparticles (MNPs) surfaces which contain highly reactive chemical groups such as carboxyl, hydroxyl and amine groups, can be used as a reaction platform on which to graft different functional components. In addition, MNPs easily adhere to substrate surface, and serve as a secondary reaction platform to modify it. The multifunctionality and intrinsic biocompatibility make melanin-like nanoparticles promising as a multifunctional and powerful nanoplatform for oncological applications. This paper first reviews the preparation methods, polymerization mechanisms and physicochemical properties of melanin including natural melanin and chemically synthesized melanin to guide scholars in MNP-based design. Then, recent advances in MNPs especially synthetic polydopamine (PDA) melanin for various medical oncological applications are systematically and thoroughly described, mainly focusing on bioimaging, photothermal therapy (PTT), and drug delivery for tumor therapy. Finally, based on the investigated literature, the current challenges and future directions for clinical translation are reasonably discussed, focusing on the innovative design of MNPs and further elucidation of pharmacokinetics. This paper is a timely and comprehensive and detailed study of the progress of MNPs in tumor therapy, especially PTT, and provides ideas for the design of personalized and customizable oncology nanomedicines to address the heterogeneity of the tumor microenvironment.
Collapse
Affiliation(s)
- Luyao Tian
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Xia Li
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Haixia Ji
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Qing Yu
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Mingjuan Yang
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| | - Lanping Guo
- grid.410318.f0000 0004 0632 3409National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Luqi Huang
- grid.410318.f0000 0004 0632 3409National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Wenyuan Gao
- grid.33763.320000 0004 1761 2484Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193 China
| |
Collapse
|
46
|
Li J, Tian H, Zhu F, Jiang S, He M, Li Y, Luo Q, Sun W, Liu X, Wang P. Amorphous Ultra-Small Fe-Based Nanocluster Engineered and ICG Loaded Organo-Mesoporous Silica for GSH Depletion and Photothermal-Chemodynamic Synergistic Therapy. Adv Healthc Mater 2022; 11:e2201986. [PMID: 36106722 DOI: 10.1002/adhm.202201986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/10/2022] [Indexed: 01/28/2023]
Abstract
Intracellular oxidative amplification can effectively destroy tumor cells. Additionally, Fe-mediated Fenton reaction often converts cytoplasm H2 O2 to generate extensive hypertoxic hydroxyl radical (• OH), leading to irreversible mitochondrion damage for tumor celleradication, which is widely famous as tumor chemodynamic therapy (CDT). Unfortunately, intracellular overexpressed glutathione (GSH) always efficiently scavenges • OH, resulting in the significantly reduced CDT effect. To overcome this shortcoming and improve the oxidative stress in cytoplasm, Fe3 O4 ultrasmall nanoparticle encapsulated and ICG loaded organo-mesoporous silica nanovehicles (omSN@Fe-ICG) are constructed to perform both photothermal and GSH depletion to enhance the Fenton-like CDT, by realizing intracellular oxidative stress amplification. After this nanoagents are internalized, the tetrasulfide bonds in the dendritic mesoporous framework can be decomposed with GSH to amplify the toxic ROS neration by selectively converting H2 O2 to hydroxyl radicals through the released Fe-based nanogranules. Furthermore, the NIR laser-induced hyperthermia can further improve the Fenton reaction rate that simultaneously destroyed the mitochondria. As a result, the GSH depletion and photothermal assisted CDT can remarkably improve the tumor eradication efficacy.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Rare earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Haina Tian
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen, 361005, P. R. China
| | - Fukai Zhu
- Collaborative Innovation Center of Mushroom Health Industry, Minnan Normal University, Zhangzhou, Fujian, 363000, P. R. China
| | - Suhua Jiang
- Collaborative Innovation Center of Mushroom Health Industry, Minnan Normal University, Zhangzhou, Fujian, 363000, P. R. China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, P. R. China
| | - Yang Li
- School of Rare earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Qiang Luo
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, P. R. China
| | - Xiaolong Liu
- School of Rare earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Peiyuan Wang
- School of Rare earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
47
|
Hu X, Zhang L, Wang W, Zhang Y, Wang J. Mitochondria-targeted and multistage synergistic ROS-elevated drug delivery system based on surface decorated MnO2 with CeO2 for enhanced chemodynamic/chemotherapy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
|
49
|
A versatile nanozyme integrated colorimetric and photothermal lateral flow immunoassay for highly sensitive and reliable Aspergillus flavus detection. Biosens Bioelectron 2022; 213:114435. [DOI: 10.1016/j.bios.2022.114435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/28/2022]
|
50
|
Li X, Gao Y, Liu X, Hu X, Li Y, Sun J, Wang P, Wu H, Kim H, Ramalingam M, Xie S, Wang R. Ultrasound and laser-promoted dual-gas nano-generator for combined photothermal and immune tumor therapy. Front Bioeng Biotechnol 2022; 10:1005520. [PMID: 36177188 PMCID: PMC9513372 DOI: 10.3389/fbioe.2022.1005520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022] Open
Abstract
The combination of photothermal therapy (PTT) and immune tumor therapy has emerged as a promising avenue for cancer treatment. However, the insufficient immune response caused by inefficient immunogenic cell death (ICD) inducers and thermal resistance, immunosuppression, and immune escape resulting from the hypoxic microenvironment of solid tumors severely limit its efficacy. Herein, we report an ultrasound and laser-promoted dual-gas nano-generator (calcium carbonate-polydopamine-manganese oxide nanoparticles, CPM NPs) for enhanced photothermal/immune tumor therapy through reprogramming tumor hypoxic microenvironment. In this system, CPM NPs undergo reactive decomposition in a moderately acidic tumor, resulting in the generation of calcium, manganese ions, carbon dioxide (CO2), and oxygen (O2). Calcium and manganese ions act as adjuvants that trigger an immune response. The cancer cell membrane rupture caused by sudden burst of bubbles (CO2 and O2) under ultrasound stimulation and the photothermal properties of PDA also contributed to the ICD effect. The generation of O2 alleviates tumor hypoxia and thus reduces hypoxia-induced heat resistance and immunosuppressive effects, thereby improving the therapeutic efficacy of combination PTT and immune therapy. The present study provides a novel approach for the fabrication of a safe and effective tumor treatment platform for future clinical applications.
Collapse
Affiliation(s)
- XinYu Li
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, China
| | - Yong Gao
- Binzhou Medical University Hospital, Binzhou, China
| | - XinZheng Liu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, China
| | - XiaoQian Hu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - YunMeng Li
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - JunXi Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - PingYu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, China
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - HaeWon Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Korea
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Korea
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- *Correspondence: Murugan Ramalingam, ; ShuYang Xie, ; RanRan Wang,
| | - ShuYang Xie
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, China
- *Correspondence: Murugan Ramalingam, ; ShuYang Xie, ; RanRan Wang,
| | - RanRan Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, China
- *Correspondence: Murugan Ramalingam, ; ShuYang Xie, ; RanRan Wang,
| |
Collapse
|