1
|
Liu X, Shi J, Wu Y, Ma M, Wang Y, Li Z, Cai X, Zhang Y, Duan R, Liu S, Gao W, Liu Z. Lateral Heterostructures of Defect-Patterned MoS 2 for Efficient Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411077. [PMID: 40099642 DOI: 10.1002/smll.202411077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/19/2025] [Indexed: 03/20/2025]
Abstract
Defect engineering has demonstrated significant potential in optimizing the catalytic performance of molybdenum disulfide (MoS2) for hydrogen evolution reaction (HER). The simultaneous control of defect type, concentration, and spatial distribution within a single domain is crucial for accurate experimental detection and the establishment of structure-performance relationships, yet it remains challenging. Here, an efficient one-pot chemical vapor deposition (CVD) method is presented to synthesize monolayer defect-patterned MoS2 with alternating domains of varying Mo vacancy (VMo) concentrations, along with trace tellurium (Te) doping at the edges, forming MoS2-MoS2xTe2(1-x) lateral heterostructures (LHS). A single defect patterned LHS-based on-chip electrochemical microcell, utilizing graphene as an intermediate contact, is employed to extract HER activity and achieve higher reaction kinetic than pristine MoS2. These findings demonstrate that the synergistic effect of VMo and Te doping effectively activates more unsaturated sulfur atoms, facilitating proton adsorption and accelerating the HER process. This work enriches the point defect engineering and provides valuable insights for the design and synthesis of 2D semiconductor catalysts.
Collapse
Affiliation(s)
- Xiao Liu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jiayu Shi
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yao Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mingyu Ma
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuqing Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhiwei Li
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiangbin Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yan Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Ruihuan Duan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Song Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Centre for Quantum Technologies, Nanyang Technological University, Singapore, 639798, Singapore
- Quantum Science and Engineering Centre (QSec), Nanyang Technological University, Singapore, 639798, Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
2
|
Zhang F, Tamura R, Zeng F, Kozawa D, Kitaura R. Bayesian Optimization for Controlled Chemical Vapor Deposition Growth of WS 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59109-59115. [PMID: 39405090 DOI: 10.1021/acsami.4c15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
We applied Bayesian optimization (BO), a machine learning (ML) technique, to optimize the growth conditions of monolayer WS2 using photoluminescence (PL) intensity as the objective function. Through iterative experiments guided by BO, an improvement of 86.6% in PL intensity is achieved within 13 optimization rounds. Statistical analysis revealed the relationships between growth conditions and PL intensity, highlighting the importance of critical conditions, including the tungsten source concentration and Ar flow rate. Furthermore, the effectiveness of BO is demonstrated by comparison with random search, showing its ability to converge to optimal conditions with fewer iterations. This research highlights the potential of ML-driven approaches in accelerating material synthesis and optimization processes, paving the way for advances in two-dimensional (2D) material-based technologies.
Collapse
Affiliation(s)
- Feng Zhang
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Chemistry, Nagoya University, Nagoya 464-8601, Japan
| | - Ryo Tamura
- Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, Chiba 277-8568, Japan
| | - Fanyu Zeng
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Daichi Kozawa
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Ryo Kitaura
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
3
|
Pei C, Zhang J, Li H. Probing Polymorphic Stacking Domains in Mechanically Exfoliated Two-Dimensional Nanosheets Using Atomic Force Microscopy and Ultralow-Frequency Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:339. [PMID: 38392712 PMCID: PMC10892501 DOI: 10.3390/nano14040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
As one of the key features of two-dimensional (2D) layered materials, stacking order has been found to play an important role in modulating the interlayer interactions of 2D materials, potentially affecting their electronic and other properties as a consequence. In this work, ultralow-frequency (ULF) Raman spectroscopy, electrostatic force microscopy (EFM), and high-resolution atomic force microscopy (HR-AFM) were used to systematically study the effect of stacking order on the interlayer interactions as well as electrostatic screening of few-layer polymorphic molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) nanosheets. The stacking order difference was first confirmed by measuring the ULF Raman spectrum of the nanosheets with polymorphic stacking domains. The atomic lattice arrangement revealed using HR-AFM also clearly showed a stacking order difference. In addition, EFM phase imaging clearly presented the distribution of the stacking domains in the mechanically exfoliated nanosheets, which could have arisen from electrostatic screening. The results indicate that EFM in combination with ULF Raman spectroscopy could be a simple, fast, and high-resolution method for probing the distribution of polymorphic stacking domains in 2D transition metal dichalcogenide materials. Our work might be promising for correlating the interlayer interactions of TMDC nanosheets with stacking order, a topic of great interest with regard to modulating their optoelectronic properties.
Collapse
Affiliation(s)
| | | | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
4
|
Hu L, Li X, Guo X, Xu M, Shi Y, Herve NB, Xiang R, Zhang Q. Electret Modulation Strategy to Enhance the Photosensitivity Performance of Two-Dimensional Molybdenum Sulfide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59704-59713. [PMID: 38087993 DOI: 10.1021/acsami.3c14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Due to the limited light absorption efficiency of atomic thickness layers and the existence of quenching effects, photodetectors solely made of transition metal dichalcogenides (TMDs) have exhibited an unsatisfactory detection performance. In this article, electret/TMD hybridized devices were proposed by vertically coupling a MoS2 channel and the PTFE film, which reveals an optimized photodetection behavior. Negative charges were generated in the PTFE layer through the corona charging method, akin to applying a negative bias on the MoS2 channel in lieu of a traditional voltage-driven back gate. Under a charging voltage of -6 kV, PTFE/MoS2 devices reveal improved photodetection performance (Rhybrid = 67.95A/W versus Ronly = 3.37 A/W, at 470 nm, 1.20 mW cm-2) and faster recovery speed (τd(hybrid) = 2000 ms versus τd(only) = 2900 ms) compared to those bare MoS2 counterparts. The optimal detection performance (2 orders of magnitude) was obtained when the charging voltage was -2 kV, limited by the minimum of the carrier density in MoS2 channels. This study provides an alternative strategy to optimize optoelectronic devices based on the 2D components through non-voltage-driven gating.
Collapse
Affiliation(s)
- Lian Hu
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
| | - Xin Li
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Xinyu Guo
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
| | - Minxuan Xu
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Yueqin Shi
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
| | - Nduwarugira B Herve
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310003, China
| | - Rong Xiang
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310003, China
| | - Qi Zhang
- Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University (HDU), Hangzhou 310018, China
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University (HDU), Hangzhou 310018, P. R. China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
5
|
Kayal A, Barman PK, Sarma PV, Shaijumon MM, Kini RN, Mitra J. Symmetric domain segmentation in WS 2flakes: correlating spatially resolved photoluminescence, conductance with valley polarization. NANOTECHNOLOGY 2022; 33:495203. [PMID: 36041399 DOI: 10.1088/1361-6528/ac8d9d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The incidence of intra-flake heterogeneity of spectroscopic and electrical properties in chemical vapour deposited (CVD) WS2flakes is explored in a multi-physics investigation via spatially resolved spectroscopic maps correlated with electrical, electronic and mechanical properties. The investigation demonstrates that the three-fold symmetric segregation of spectroscopic response, in topographically uniform WS2flakes are accompanied by commensurate segmentation of electronic properties e.g. local carrier density and the differences in the mechanics of tip-sample interactions, evidenced via scanning probe microscopy phase maps. Overall, the differences are understood to originate from point defects, namely sulfur vacancies within the flake along with a dominant role played by the substrate. While evolution of the multi-physics maps upon sulfur annealing elucidates the role played by sulfur vacancy, substrate-induced effects are investigated by contrasting data from WS2flake on Si and Au surfaces. Local charge depletion induced by the nature of the sample-substrate junction in case of WS2on Au is seen to invert the electrical response with comprehensible effects on their spectroscopic properties. Finally, the role of these optoelectronic properties in preserving valley polarization that affects valleytronic applications in WS2flakes, is investigated via circular polarization discriminated photoluminescence experiments. The study provides a thorough understanding of spatial heterogeneity in optoelectronic properties of WS2and other transition metal chalcogenides, which are critical for device fabrication and potential applications.
Collapse
Affiliation(s)
- Arijit Kayal
- School of Physics, IISER Thiruvananthapuram, Kerala 695551, India
| | | | - Prasad V Sarma
- School of Physics, IISER Thiruvananthapuram, Kerala 695551, India
| | - M M Shaijumon
- School of Physics, IISER Thiruvananthapuram, Kerala 695551, India
| | - R N Kini
- School of Physics, IISER Thiruvananthapuram, Kerala 695551, India
| | - J Mitra
- School of Physics, IISER Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
6
|
Luo X, Peng Z, Wang Z, Dong M. Layer-by-Layer Growth of AA-Stacking MoS 2 for Tunable Broadband Phototransistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59154-59163. [PMID: 34856097 DOI: 10.1021/acsami.1c19906] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The stacking configuration has been considered as an important additional degree of freedom to tune the physical property of layered materials, such as superconductivity and interlayer excitons. However, the facile growth of highly uniform stacking configuration is still a challenge. Herein, the AA-stacking MoS2 domains with a ratio up to 99.5% has been grown by using the modified chemical vapor deposition through introducing NaCl molecules in the confined space. By tuning the growth time, MoS2 domains would transit from an AA-stacking bilayer to an AAAAA-stacking five-layer. The epitaxial growth mechanism has been insightfully studied, revealing that the critical nucleation size of the AA-stacking bilayer is 5.0 ± 3.0 μm. Through investigation of the photoluminescence, the photoemission, especially the indirect photoexcitation, is dependent on both the stacking fashion and layer number. Furthermore, by studying the gate-tuned MoS2 phototransistors, we found a significant dependence on the stacking configuration of MoS2 of the photoexcitation and a different gate tunable photoresponse. The AAA-stacking trilayer MoS2 phototransistor delivers a photoresponse of 978.14 A W-1 at 550 nm. By correction of the external quantum efficiency with external field and illumination power density, it has been found that the photoresponse tunability is dependent on the layer number due to the strong photogating effect. This strategy provides a general avenue for the epitaxial growth of van der Waals film which will further facilitate the applications in a tunable photodetector.
Collapse
Affiliation(s)
- Xiai Luo
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenghan Peng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|