1
|
Bu Y, Ma R, Wang Y, Zhao Y, Li F, Han GF, Baek JB. Metal-Based Oxygen Reduction Electrocatalysts for Efficient Hydrogen Peroxide Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412670. [PMID: 39449208 DOI: 10.1002/adma.202412670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Hydrogen peroxide (H2O2) is a high-value chemical widely used in electronics, textiles, paper bleaching, medical disinfection, and wastewater treatment. Traditional production methods, such as the anthraquinone oxidation process and direct synthesis, require high energy consumption, and involve risks from toxic substances and explosions. Researchers are now exploring photochemical, electrochemical, and photoelectrochemical synthesis methods to reduce energy use and pollution. This review focuses on the 2-electron oxygen reduction reaction (2e- ORR) for the electrochemical synthesis of H2O2, and discusses how catalyst active sites influence O2 adsorption. Strategies to enhance H2O2 selectivity by regulating these sites are presented. Catalysts require strong O2 adsorption to initiate reactions and weak *OOH adsorption to promote H2O2 formation. The review also covers advances in single-atom catalysts (SACs), multi-metal-based catalysts, and highlights non-noble metal oxides, especially perovskite oxides, for their versatile structures and potential in 2e- ORR. The potential of localized surface plasmon resonance (LSPR) effects to enhance catalyst performance is also discussed. In conclusion, emphasis is placed on optimizing catalyst structures through theoretical and experimental methods to achieve efficient and selective H2O2 production, aiming for sustainable and commercial applications.
Collapse
Affiliation(s)
- Yunfei Bu
- UNIST-NUIST Environment and Energy Jointed Lab, (UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Rong Ma
- UNIST-NUIST Environment and Energy Jointed Lab, (UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yaobin Wang
- UNIST-NUIST Environment and Energy Jointed Lab, (UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yunxia Zhao
- UNIST-NUIST Environment and Energy Jointed Lab, (UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Feng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan, Shanghai, 200433, P. R. China
| | - Gao-Feng Han
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
2
|
Yang H, An N, Kang Z, Menezes PW, Chen Z. Understanding Advanced Transition Metal-Based Two Electron Oxygen Reduction Electrocatalysts from the Perspective of Phase Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400140. [PMID: 38456244 DOI: 10.1002/adma.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Non-noble transition metal (TM)-based compounds have recently become a focal point of extensive research interest as electrocatalysts for the two electron oxygen reduction (2e- ORR) process. To efficiently drive this reaction, these TM-based electrocatalysts must bear unique physiochemical properties, which are strongly dependent on their phase structures. Consequently, adopting engineering strategies toward the phase structure has emerged as a cutting-edge scientific pursuit, crucial for achieving high activity, selectivity, and stability in the electrocatalytic process. This comprehensive review addresses the intricate field of phase engineering applied to non-noble TM-based compounds for 2e- ORR. First, the connotation of phase engineering and fundamental concepts related to oxygen reduction kinetics and thermodynamics are succinctly elucidated. Subsequently, the focus shifts to a detailed discussion of various phase engineering approaches, including elemental doping, defect creation, heterostructure construction, coordination tuning, crystalline design, and polymorphic transformation to boost or revive the 2e- ORR performance (selectivity, activity, and stability) of TM-based catalysts, accompanied by an insightful exploration of the phase-performance correlation. Finally, the review proposes fresh perspectives on the current challenges and opportunities in this burgeoning field, together with several critical research directions for the future development of non-noble TM-based electrocatalysts.
Collapse
Affiliation(s)
- Hongyuan Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Na An
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
3
|
Wang Y, Yang H, Lu N, Wang D, Zhu K, Wang Z, Mou L, Zhang Y, Zhao Y, Tao K, Ma F, Peng S. Electrochemical production of hydrogen peroxide by non-noble metal-doped g-C 3N 4 under a neutral electrolyte. NANOSCALE 2023; 15:19148-19158. [PMID: 37938108 DOI: 10.1039/d3nr04307j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Electrochemical oxygen reduction (ORR) for the production of clean hydrogen peroxide (H2O2) is an effective alternative to industrial anthraquinone methods. The development of highly active, stable, and 2e- ORR oxygen reduction electrocatalysts while suppressing the competing 4e- ORR pathway is currently the main challenge. Herein, bimetallic doping was successfully achieved based on graphitic carbon nitride (g-C3N4) with the simultaneous introduction of K and Co, whereby 2D porous K-Co/CNNs nanosheets were obtained. The introduction of Co promoted the selectivity for H2O2, while the introduction of K not only promoted the formation of 2D nanosheets of g-C3N4, but also inhibited the ablation of H2O2 by K-Co/CNNs. Electrochemical studies showed that the selectivity of H2O2 in K-Co/CNNs under neutral electrolyte was as high as 97%. After 24 h, the H2O2 accumulation of K-Co/CNNs was as high as 31.7 g L-1. K-Co/CNNs improved the stability of H2O2 by inhibiting the ablation of H2O2, making it a good 2e- ORR catalyst and providing a new research idea for the subsequent preparation of H2O2.
Collapse
Affiliation(s)
- Ying Wang
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Hongcen Yang
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Niandi Lu
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Di Wang
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Kun Zhu
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Zhixia Wang
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Lianshan Mou
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Yan Zhang
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Yawei Zhao
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Kun Tao
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Fei Ma
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Shanglong Peng
- School of Physical Science and Technology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Chen X, Wang L, Sun W, Yang Z, Jin J, Huang Y, Liu G. Boron Bifunctional Catalysts for Rapid Degradation of Persistent Organic Pollutants in a Metal-Free Electro-Fenton Process: O 2 and H 2O 2 Activation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15693-15702. [PMID: 37791801 DOI: 10.1021/acs.est.3c02877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Metals usually served as the active sites of the heterogeneous bifunctional electro-Fenton reaction, which faced the challenge of poor stability under acidic or even neutral conditions. Exploring a metal-free heterogeneous bifunctional electro-Fenton catalyst can effectively solve the above problems. In this work, a stable metal-free heterogeneous bifunctional boron-modified porous carbon catalyst (BTA-1000) was synthesized. For the BTA-1000 catalyst, the yield of H2O2 (294 mg/L) significantly increased. The degradation rate of phenol by BTA-1000 (0.242 min-1) increased by an order of magnitude, compared with the porous carbon catalyst (0.0105 min-1). The BTA catalyst could rapidly degrade industrial dye wastewater, and its specific energy consumption was 5.52 kW h kg-1 COD-1, lower than that in previous reports (6.38-7.4 kW h kg-1 COD-1). DFT and XPS revealed that C═O and -BC2O groups jointly promoted the generation of H2O2, and the -BCO2 group played dominant roles in the generation of •OH because the oxygen atom near the electron-giving groups (-BCO2 group) facilitated the formation of hydrogen bond and H2O2 adsorption. This work gained deep insights into the reaction mechanism of the boron-modified porous carbon catalyst, which helped to guide the development of metal-free heterogeneous bifunctional electro-Fenton catalysts.
Collapse
Affiliation(s)
- Xu Chen
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Lida Wang
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
- Dalian Key Laboratory of Flue Gas Purification and Waste Heat Utilization, Dalian 116024, China
| | - Wen Sun
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
- Dalian Key Laboratory of Flue Gas Purification and Waste Heat Utilization, Dalian 116024, China
| | - Zhengqing Yang
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Jingjing Jin
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - YaPeng Huang
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
| | - Guichang Liu
- Department of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Dalian 116024, China
- Dalian Key Laboratory of Flue Gas Purification and Waste Heat Utilization, Dalian 116024, China
| |
Collapse
|
5
|
Xu Y, Cao Y, Tan L, Chen Q, Fang Y. The development of cobalt phosphide co-catalysts on BiVO 4 photoanodes to improve H 2O 2 production. J Colloid Interface Sci 2023; 633:323-332. [PMID: 36459937 DOI: 10.1016/j.jcis.2022.11.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Photoanodic hydrogen peroxide (H2O2) production via water oxidation is limited by low yields and poor selectivity. Herein, four variations of cobalt phosphides, including pristine CoP and Co2P crystals, and two mixed-phase cobalt phosphides (CoP/Co2P) with different ratios, were applied as co-catalysts on the BiVO4 (BVO) photoanode to improve H2O2 production. The optimal yield and selectivity were approximately 9.6 µmol‧h-1‧cm-2 and 25.2 % at a voltage bias of 1.7 V vs reversible hydrogen electrode (VRHE) under sunlight illumination, respectively. This performance is approximately 1.8 times that of pristine BVO photoanode. The roles of the Co and P sites were investigated. In particular, the Co site promotes the breaking of one HO bond in water to form OH• radicals, which is the rate-determining step in H2O2 production. The P site plays an important role in the desorption of H2O2 formed from the catalyst, which is responsible for the recovery of fresh catalytic sites. Among the four samples, Co2P exhibited the best performance for H2O2 production because it had the highest rate of OH• formation owing to its improved accumulation property. This study offers a rational design strategy for co-catalysts for photoanodic H2O2 production.
Collapse
Affiliation(s)
- Yuntao Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Yanfei Cao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Li Tan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| | - Qiao Chen
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| |
Collapse
|
6
|
Chen X, Dai Y, Zhang H, Zhao X. Revealing the steric effects of cobalt porphyrin on the selectivity of oxygen reduction reaction. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
7
|
Xiang F, Zhao X, Yang J, Li N, Gong W, Liu Y, Burguete-Lopez A, Li Y, Niu X, Fratalocchi A. Enhanced Selectivity in the Electroproduction of H 2 O 2 via F/S Dual-Doping in Metal-Free Nanofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208533. [PMID: 36448504 DOI: 10.1002/adma.202208533] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Electrocatalytic two-electron oxygen reduction (2e- ORR) to hydrogen peroxide (H2 O2 ) is attracting broad interest in diversified areas including paper manufacturing, wastewater treatment, production of liquid fuels, and public sanitation. Current efforts focus on researching low-cost, large-scale, and sustainable electrocatalysts with high activity and selectivity. Here a large-scale H2 O2 electrocatalysts based on metal-free carbon fibers with a fluorine and sulfur dual-doping strategy is engineered. Optimized samples yield with a high onset potential of 0.814 V versus reversible hydrogen electrode (RHE), an almost ideal 2e- pathway selectivity of 99.1%, outperforming most of the recently reported carbon-based or metal-based electrocatalysts. First principle theoretical computations and experiments demonstrate that the intermolecular charge transfer coupled with electron spin redistribution from fluorine and sulfur dual-doping is the crucial factor contributing to the enhanced performances in 2e- ORR. This work opens the door to the design and implementation of scalable, earth-abundant, highly selective electrocatalysts for H2 O2 production and other catalytic fields of industrial interest.
Collapse
Affiliation(s)
- Fei Xiang
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xuhong Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Jian Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ning Li
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Wenxiao Gong
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Yizhen Liu
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Arturo Burguete-Lopez
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yulan Li
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Xiaobin Niu
- School of Materials and Energy, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, China
| | - Andrea Fratalocchi
- PRIMALIGHT, Faculty of Electrical and Computer Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Motalebian M, Momeni MM, Ghayeb Y, Atapour M. Fabrication and photoelectrochemical activity of Mn/Cr co-doped titanium oxide nanostructures and their application in photocathodic protection of stainless steel. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Wu J, Hou M, Chen Z, Hao W, Pan X, Yang H, Cen W, Liu Y, Huang H, Menezes PW, Kang Z. Composition Engineering of Amorphous Nickel Boride Nanoarchitectures Enabling Highly Efficient Electrosynthesis of Hydrogen Peroxide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202995. [PMID: 35736517 DOI: 10.1002/adma.202202995] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Developing advanced electrocatalysts with exceptional two electron (2e- ) selectivity, activity, and stability is crucial for driving the oxygen reduction reaction (ORR) to produce hydrogen peroxide (H2 O2 ). Herein, a composition engineering strategy is proposed to flexibly regulate the intrinsic activity of amorphous nickel boride nanoarchitectures for efficient 2e- ORR by oriented reduction of Ni2+ with different amounts of BH4 - . Among borides, the amorphous NiB2 delivers the 2e- selectivity close to 99% at 0.4 V and over 93% in a wide potential range, together with a negligible activity decay under prolonged time. Notably, an ultrahigh H2 O2 production rate of 4.753 mol gcat -1 h-1 is achieved upon assembling NiB2 in the practical gas diffusion electrode. The combination of X-ray absorption and in situ Raman spectroscopy, as well as transient photovoltage measurements with density functional theory, unequivocally reveal that the atomic ratio between Ni and B induces the local electronic structure diversity, allowing optimization of the adsorption energy of Ni toward *OOH and reducing of the interfacial charge-transfer kinetics to preserve the OO bond.
Collapse
Affiliation(s)
- Jie Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Meilin Hou
- College of Engineering, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Weiju Hao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xuelei Pan
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongyuan Yang
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Wanglai Cen
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, 610065, P. R. China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Material Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
10
|
Combining Electro-Fenton and Adsorption Processes for Reclamation of Textile Industry Wastewater and Modeling by Artificial Neural Networks. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Zhang C, Liu G, Long Q, Wu C, Wang L. Tailoring surface carboxyl groups of mesoporous carbon boosts electrochemical H 2O 2 production. J Colloid Interface Sci 2022; 622:849-859. [PMID: 35561605 DOI: 10.1016/j.jcis.2022.04.140] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
Abstract
Oxygen-doped porous carbon materials have been shown promising performance for electrochemical two-electron oxygen reduction reaction (2e- ORR), an efficient approach for the safe and continuous on-site generation of H2O2. The regulation and mechanism understanding of active oxygen-containing functional groups (OFGs) remain great challenges. Here, OFGs modified porous carbon were prepared by thermal oxidation (MC-12-Air), HNO3 oxidation (MC-12-HNO3) and H2O2 solution hydrothermal treatment (MC-12-H2O2), respectively. Structural characterization showed that the oxygen doping content of three catalysts reached about 20%, with the almost completely maintained specific surface area (exception of MC-12- HNO3). Spectroscopic characterization further revealed that hydroxyl groups are mainly introduced into MC-12-Air, while carboxyl groups are mainly introduced into MC-12- HNO3 and MC-12- H2O2. Compared with the pristine catalyst, three oxygen-functionalized catalysts showed enhanced activity and H2O2 selectivity in 2e- ORR. Among them, MC-12-H2O2 exhibited the highest catalytic activity and selectivity of 94 %, as well as a considerable HO2- accumulation of 46.2 mmol L-1 and excellent stability in an extended test over 36 h in a H-cell. Electrochemical characterization demonstrated the promotion of OFGs on ORR kinetics and the greater contribution of carboxyl groups to the intrinsically catalytic activity. DFT calculations confirmed that the electrons are transferred from carboxyl groups to adjacent carbon and the enhanced adsorption strength toward *OOH intermediate, leading to a lower energy barrier for forming *OOH on carboxyl terminated carbon atoms.
Collapse
Affiliation(s)
- Chunyu Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
| | - Quanfu Long
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chan Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
12
|
Xu Z, Ma Z, Dong K, Liang J, Zhang L, Luo Y, Liu Q, You J, Feng Z, Ma D, Wang Y, Sun X. Electrocatalytic two-electron oxygen reduction over nitrogen doped hollow carbon nanospheres. Chem Commun (Camb) 2022; 58:5025-5028. [PMID: 35373790 DOI: 10.1039/d2cc01238c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The two-electron oxygen reduction reaction (2e- ORR) has become a hopeful alternative for production of hydrogen peroxide (H2O2), but its practical feasibility is hindered by the lack of efficient electrocatalysts to achieve high activity and selectivity. Herein, we successfully synthesized outstanding nitrogen doped hollow carbon nanospheres (NHCSs) for electrochemical production of H2O2. In 0.1 M KOH, NHCSs exhibit superior and sustained catalytic activity for the 2e- ORR with an unordinary selectivity of 96.6%. Impressively, such NHCSs manifest an ultrahigh H2O2 yield rate of 7.32 mol gcat.-1 h-1 and a high faradaic efficiency of 96.7% at 0.5 V in an H-cell system. Density functional theory calculations were performed to further reveal the catalytic mechanism involved.
Collapse
Affiliation(s)
- Zhaoquan Xu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China. .,School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Ziyu Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, Henan, China.
| | - Kai Dong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jinmao You
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Zhesheng Feng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, Henan, China.
| | - Yan Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China. .,College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, Zhejiang, China
| |
Collapse
|
13
|
Zhao D, Liang J, Li J, Zhang L, Dong K, Yue L, Luo Y, Ren Y, Liu Q, Hamdy MS, Li Q, Kong Q, Sun X. A TiO 2-x nanobelt array with oxygen vacancies: an efficient electrocatalyst toward nitrite conversion to ammonia. Chem Commun (Camb) 2022; 58:3669-3672. [PMID: 35224596 DOI: 10.1039/d2cc00856d] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electrocatalytic nitrite reduction not only holds significant potential in the control of nitrite contamination in the natural environment, but also is an attractive approach for sustainable ammonia synthesis. In this communication, we report that a TiO2-x nanobelt array with oxygen vacancies on a titanium plate is able to convert nitrite into ammonia with a high faradaic efficiency of 92.7% and a large yield of 7898 μg h-1 cm-2 in alkaline solution. This monolithic catalyst also shows high durability with the maintenance of its catalytic activity for 12 h. Theoretical calculations further reveal the critical role of oxygen vacancies in nitrite electroreduction.
Collapse
Affiliation(s)
- Donglin Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China.
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Kai Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China.
| | - Luchao Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Mohamed S Hamdy
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Quan Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China.
| | - Qingquan Kong
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China. .,College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
14
|
Zhang M, Wu N, Yang J, Zhang Z. Photoelectrochemical Antibacterial Platform Based on Rationally Designed Black TiO 2-x Nanowires for Efficient Inactivation against Bacteria. ACS APPLIED BIO MATERIALS 2022; 5:1341-1347. [PMID: 35258936 DOI: 10.1021/acsabm.2c00064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A hyphenated strategy for photoelectrochemical (PEC) disinfection is proposed with rationally designed black TiO2-x as a photoresponsive material. The PEC method, a fusion of electrochemistry and photocatalysis, is an innovative and effective way to improve photocatalytic performance, which imparts certain properties to the photoelectrode and greatly promotes the charge transfer, thus effectively inhibiting the recombination of carriers and greatly promoting the catalytic efficiency. The oxygen vacancy (Vo) engineering on TiO2 is conducted to obtain black TiO2-x, which shows a much larger light absorption region in the full solar spectrum than the pristine white TiO2 and presents excellent PEC sterilization performance. The bactericidal efficiency with the PEC method is 10 times higher than that with the photocatalytic method, inactivating 99% of bacteria within a short time of 30 min. In addition, the black titanium oxide nanowires (B-TiO2-x NWs) are grown on flexible carbon cloth (CC) to form a sandwich structural self-cleaning face mask. The bacteria adhering to the surface of the mask will be sterilized quickly and efficiently under the illumination of visible light. The face mask with the characteristics of superior antibacterial effect and long service lifetime will be used for epidemic prevention and reduce the second pollution.
Collapse
Affiliation(s)
- Meihan Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Nan Wu
- Shanghai Customs, Shanghai 200002, China
| | - Juan Yang
- Technical Center for Industrial Product and Raw Material Inspection and Testing of Shanghai Customs, Shanghai 200135, China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
15
|
Kunthakudee N, Puangpetch T, Ramakul P, Hunsom M. Photocatalytic Recovery of Gold from a Non-Cyanide Gold Plating Solution as Au Nanoparticle-Decorated Semiconductors. ACS OMEGA 2022; 7:7683-7695. [PMID: 35284747 PMCID: PMC8908523 DOI: 10.1021/acsomega.1c06362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
In this work, a photocatalytic process was carried out to recover gold (Au) from the simulated non-cyanide plating bath solution. Effects of semiconductor types (TiO2, WO3, Nb2O3, CeO2, and Bi2O3), initial pH of the solution (3-10), and type of complexing agents (Na2S2O3 and Na2SO3) and their concentrations (1-4 mM each) on Au recovery were explored. Among all employed semiconductors, TiO2 exhibited the highest photocatalytic activity to recover Au from the simulated spent plating bath solution both in the absence and presence of complexing agents, in which Au was completely recovered within 15 min at a pH of 6.5. The presence of complexing agents remarkably affected the size of deposited Au on the TiO2 surface, the localized surface plasmon effect (LSPR) behavior, and the valence band (VB) edge position of the obtained Au/TiO2, without a significant change in the textural properties or the band gap energy. The photocatalytic activity of the obtained Au/TiO2 tested via two photocatalytic processes depended on the common reduction mechanism rather than the textural or optical properties. As a result, the Au/TiO2 NPs obtained from the proposed recovery process are recommended for use as a photocatalyst for the reactions occurring at the conduction band rather than at the valence band. Notably, they exhibited good stability after the fifth photocatalytic cycle for Au recovery from the actual cyanide plating bath solution.
Collapse
Affiliation(s)
- Naphaphan Kunthakudee
- Department
of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon
Pathom 73170, Thailand
| | - Tarawipa Puangpetch
- Department
of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prakorn Ramakul
- Department
of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Mali Hunsom
- Department
of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon
Pathom 73170, Thailand
- Associate
Fellow of Royal Society of Thailand (AFRST), Bangkok 10300, Thailand
| |
Collapse
|