1
|
Mamidi N, Delgadillo RMV, Sustaita AO, Lozano K, Yallapu MM. Current nanocomposite advances for biomedical and environmental application diversity. Med Res Rev 2025; 45:576-628. [PMID: 39287199 DOI: 10.1002/med.22082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/29/2023] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Nanocomposite materials are emerging as key players in addressing critical challenges in healthcare, energy storage, and environmental remediation. These innovative systems hold great promise in engineering effective solutions for complex problems. Nanocomposites have demonstrated various advantages such as simplicity, versatility, lightweight, and potential cost-effectiveness. By reinforcing synthetic and natural polymers with nanomaterials, a range of nanocomposites have exhibited unique physicochemical properties, biocompatibility, and biodegradability. Current research on nanocomposites has demonstrated promising clinical and translational applications. Over the past decade, the production of nanocomposites has emerged as a critical nano-structuring methodology due to their adaptability and controllable surface structure. This comprehensive review article systematically addresses two principal domains. A comprehensive survey of metallic and nonmetallic nanomaterials (nanofillers), elucidating their efficacy as reinforcing agents in polymeric matrices. Emphasis is placed on the methodical design and engineering principles governing the development of functional nanocomposites. Additionally, the review provides an exhaustive examination of recent noteworthy advancements in industrial, environmental, biomedical, and clinical applications within the realms of nanocomposite materials. Finally, the review concludes by highlighting the ongoing challenges facing nanocomposites in a wide range of applications.
Collapse
Affiliation(s)
- Narsimha Mamidi
- School of Pharmacy, Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Ramiro M V Delgadillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Alan O Sustaita
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Karen Lozano
- Mechanical Engineering Department, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| |
Collapse
|
2
|
Xu W, Guan G, Yue R, Dong Z, Lei L, Kang H, Song G. Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy. Chem Rev 2025; 125:1897-1961. [PMID: 39951340 DOI: 10.1021/acs.chemrev.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of regulatory cell death, has garnered significant interest as a therapeutic target in cancer treatment due to its distinct characteristics, including lipid peroxide generation and redox imbalance. However, its clinical application in oncology is currently limited by issues such as suboptimal efficacy and potential off-target effects. The advent of nanotechnology has provided a new way for overcoming these challenges through the development of activatable magnetic nanoparticles (MNPs). These innovative MNPs are designed to improve the specificity and efficacy of ferroptosis induction. This Review delves into the chemical and biological principles guiding the design of MNPs for ferroptosis-based cancer therapies and imaging-guided therapies. It discusses the regulatory mechanisms and biological attributes of ferroptosis, the chemical composition of MNPs, their mechanism of action as ferroptosis inducers, and their integration with advanced imaging techniques for therapeutic monitoring. Additionally, we examine the convergence of ferroptosis with other therapeutic strategies, including chemodynamic therapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, within the context of nanomedicine strategies utilizing MNPs. This Review highlights the potential of these multifunctional MNPs to surpass the limitations of conventional treatments, envisioning a future of drug-resistance-free, precision diagnostics and ferroptosis-based therapies for treating recalcitrant cancers.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lingling Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, 12 Seoul 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
3
|
Zhang C, Jun L, Gao Y, Guo L, Ding J, Zhu L, Du Z, Xiong J, Zhang X, Zhang W, Dong B, Alifu N. Targeted Theranostic Nanoprobes Assisted In Vivo NIR-II Fluorescence Imaging-Guided Surgery Therapy for Alveolar Echinococcosis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6069-6082. [PMID: 39808680 DOI: 10.1021/acsami.4c19558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Alveolar echinococcosis (AE) is a serious parasitic infectious disease that is highly invasive and destructive to the liver and has a high mortality rate. However, currently, there is no effective targeted imaging and treatment method for the precise detection and therapy of AE. We proposed a new two-step targeting strategy (TSTS) for AE based on poly(lactic-co-glycolic acid) (PLGA). We designed and constructed a novel type of ICG@PLGA@Lips nanoprobe with integrated imaging and treatment properties. First, we used the characteristics of PLGA gluconeogenic raw material to target the liver during blood circulation. Then, we utilized the characteristics of PLGA specifically penetrating the AE shell to achieve specific identification of AE in the liver. Under 808 nm laser excitation, ICG@PLGA@Lips effectively achieved accurate imaging of AE based on near-infrared II (NIR-II, 900-1700 nm) fluorescence imaging methods and achieved AE treatment through PDT effects. PLGA improved the optical properties of ICG, while liposomes further improved the biocompatibility of the nanoprobe. As ICG@PLGA@Lips showed strong NIR-II fluorescence emission and good biocompatibility, ICG@PLGA@Lips showed advantages in the specific fluorescence navigation of AE surgical resection lesions. Thus, with the assistance of ICG@PLGA@Lips, we achieved precise targeted and real-time NIR-II fluorescence imaging of AE for the first time. We successfully obtained in vivo NIR-II fluorescence imaging-guided photodynamic/surgical therapy of AE. This TSTS-based AE imaging and treatment exploration provided a new strategy for accurate imaging and treatment of early AE, which is expected to significantly improve the prognosis of patients.
Collapse
Affiliation(s)
- Chi Zhang
- School of Public Health, Xinjiang Medical University, Urumqi 830054, China
| | - Li Jun
- State Key Laboratory of Pathogensis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yuxiang Gao
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China
| | - Le Guo
- School of Public Health, Xinjiang Medical University, Urumqi 830054, China
| | - Jiayi Ding
- School of Public Health, Xinjiang Medical University, Urumqi 830054, China
| | - Lijun Zhu
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China
| | - Zhong Du
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China
| | - Jiabao Xiong
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China
| | - Xueliang Zhang
- School of Public Health, Xinjiang Medical University, Urumqi 830054, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogensis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Biao Dong
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Nuernisha Alifu
- School of Public Health, Xinjiang Medical University, Urumqi 830054, China
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830063, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
4
|
Lu Z, Yan J, Xu M, Liu J, Zeng J, Ren Y, Sun L, Zhang Y, Cao Y, Pei R. A "Dual-Key-and-Lock" MRI Contrast Agent with T 1-T 2 Switchable Function for Accurate Diagnosis of Tumors. NANO LETTERS 2024. [PMID: 39036992 DOI: 10.1021/acs.nanolett.4c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Extremely small iron oxide nanoparticle (ESIONP)-based stimuli-responsive switchable MRI contrast agents (CAs) show great promise for accurate detection of tumors due to their outstanding advantages of high specificity and low background signal. However, currently developed ESIONP-based switchable CAs often suffer single-biomarker-induced responses, which lack absolute specificity to pathological tissues, potentially diminishing diagnostic accuracy. In this study, weak acidity and hypoxia, two of the most remarkable characteristics of tumors, are introduced as dual biomarker stimuli to construct an ESIONP-based switchable MRI CA (DKL-CA), with its signal switch controlled by a "dual-key-and-lock" strategy. Only when DKL-CA is exposed to a coexisting weakly acidic and hypoxic environment can monodispersed ESIONPs form nanoclusters, thereby realizing a switch from the T1 to T2 contrast. Moreover, DKL-CA exhibits favorable biosafety and the capacity for precise tumor diagnosis in tumor-bearing mice. Overall, DKL-CA paves the way for designing highly accurate ESIONP-based MRI CAs for tumor diagnosis.
Collapse
Affiliation(s)
- Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jincong Yan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Mingsheng Xu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jihuan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jianxian Zeng
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yuxin Ren
- Department of Cardiology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Lina Sun
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ye Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
5
|
Zhang B, Yang R, Yu H, Peng Y, Huang H, Hameed MMA, Wang H, Zhang G, El-Newehy M, Shen M, Shi X, Peng S. Macrophage membrane-camouflaged nanoclusters of ultrasmall iron oxide nanoparticles for precision glioma theranostics. Biomater Sci 2024; 12:2705-2716. [PMID: 38607326 DOI: 10.1039/d4bm00357h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Developing effective nanomedicines to cross the blood-brain barrier (BBB) for efficient glioma theranostics is still considered to be a challenging task. Here, we describe the development of macrophage membrane (MM)-coated nanoclusters (NCs) of ultrasmall iron oxide nanoparticles (USIO NPs) with dual pH- and reactive oxygen species (ROS)-responsivenesses for magnetic resonance (MR) imaging and chemotherapy/chemodynamic therapy (CDT) of orthotopic glioma. Surface citrate-stabilized USIO NPs were solvothermally synthesized, sequentially modified with ethylenediamine and phenylboronic acid, and cross-linked with gossypol to form gossypol-USIO NCs (G-USIO NCs), which were further coated with MMs. The prepared MM-coated G-USIO NCs (G-USIO@MM NCs) with a mean size of 99.9 nm display tumor microenvironment (TME)-responsive gossypol and Fe release to promote intracellular ROS production and glutathione consumption. With the MM-mediated BBB crossing and glioma targeting, the G-USIO@MM NCs can specifically inhibit orthotopic glioma in vivo through the gossypol-mediated chemotherapy and Fe-mediated CDT. Meanwhile, USIO NPs can be dissociated from the NCs under the TME, thus allowing for effective T1-weighted glioma MR imaging. The developed G-USIO@MM NCs with simple components and drug as a crosslinker are promising for glioma theranostics, and may be extended to tackle other cancer types.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Rui Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongwei Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yamin Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Haoyu Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Guixiang Zhang
- Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Shaojun Peng
- Center for Biological Science and Technology & College of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
6
|
Gao Y, Ouyang Z, Li G, Yu Q, Dai W, Rodrigues J, Pich A, Abdul Hameed MM, Shen M, Shi X. Poly(alkylideneamine) Dendrimer Nanogels Codeliver Drug and Nucleotide To Alleviate Anticancer Drug Resistance through Immunomodulation. ACS MATERIALS LETTERS 2024; 6:517-527. [DOI: 10.1021/acsmaterialslett.3c01426] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Qiuyu Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Waicong Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - João Rodrigues
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, 6167 RD Geleen, The Netherlands
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
7
|
Yang Y, Liu Y, Song L, Cui X, Zhou J, Jin G, Boccaccini AR, Virtanen S. Iron oxide nanoparticle-based nanocomposites in biomedical application. Trends Biotechnol 2023; 41:1471-1487. [PMID: 37407395 DOI: 10.1016/j.tibtech.2023.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023]
Abstract
Iron-oxide-based biomagnetic nanocomposites, recognized for their significant properties, have been utilized in MRI and cancer treatment for several decades. The expansion of clinical applications is limited by the occurrence of adverse effects. These limitations are largely attributed to suboptimal material design, resulting in agglomeration, reduced magnetic relaxivity, and inadequate functionality. To address these challenges, various synthesis methods and modification strategies have been used to tailor the size, shape, and properties of iron oxide nanoparticle (FeONP)-based nanocomposites. The resulting modified nanocomposites exhibit significant potential for application in diagnostic, therapeutic, and theranostic contexts, including MRI, drug delivery, and anticancer and antimicrobial activity. Yet, their biosafety profile must be rigorously evaluated. Such efforts will facilitate the broader clinical translation of FeONP-based nanocomposites in biomedical applications.
Collapse
Affiliation(s)
- Yuyun Yang
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China.
| | - Yuejun Liu
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China
| | - Laiming Song
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China
| | - Xiufang Cui
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China
| | - Juncen Zhou
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Guo Jin
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Sannakaisa Virtanen
- Institute of Surface Science and Corrosion, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Li L, Gao Y, Zhang Y, Yang R, Ouyang Z, Guo R, Yu H, Shi X, Cao X. A Biomimetic Nanogel System Restores Macrophage Phagocytosis for Magnetic Resonance Imaging-Guided Synergistic Chemoimmunotherapy of Breast Cancer. Adv Healthc Mater 2023; 12:e2300967. [PMID: 37470683 DOI: 10.1002/adhm.202300967] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Novel strategies to facilitate tumor-specific drug delivery and restore immune attacks remain to be developed to overcome the current limitations of chemotherapy. Herein, a cancer cell membrane (CM)-camouflaged and ultrasmall iron oxide nanoparticles (USIO NPs)-loaded polyethylenimine nanogel (NG) system is reported to co-deliver docetaxel (DTX) and CD47 siRNA (siCD47). The prepared co-delivery system exhibits good colloidal stability, biocompatibility, and r1 relaxivity (1.35 mM-1 s-1 ) and enables redox-responsive release of the loaded DTX in the tumor microenvironment. The NG system realizes homologous targeting delivery of DTX and siCD47 to murine breast cancer cells (4T1 cells) for efficient chemotherapy and gene silencing; thus, inducing immunogenic cell death (ICD) and restoring macrophage phagocytic effect through downregulation of "don't eat me" signals on cancer cells. Likewise, the co-delivery system can also act on macrophages to promote their M1 polarization, which can be combined with DTX-mediated ICD and antibody-mediated immune checkpoint blockade to generate effector T cells for robust chemoimmunotherapy. Further, the USIO NPs-incorporated NG system also allows for magnetic resonance imaging of tumors. The developed biomimetic NG system acting on both cancer cells and macrophages holds a promising potential for macrophage phagocytosis-restored chemoimmunotherapy.
Collapse
Affiliation(s)
- Lulu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yiming Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Rui Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Hongwei Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
9
|
Fernandes T, Martins NCT, Daniel-da-Silva AL, Trindade T. Dendrimer-based magneto-plasmonic nanosorbents for water quality monitoring using surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121730. [PMID: 35988470 DOI: 10.1016/j.saa.2022.121730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
In this work, we report the synthesis of magneto-plasmonic dendrimer-based nanosorbents containing Au nanostars and we demonstrate that they can be used as versatile optical sensors for the detection of pesticides in spiked water samples. The magnetic hybrid nanoparticles were obtained by conjugating silica-functionalized G5-NH2 PAMAM dendrimers to silica-coated magnetite cores. The resulting magnetic-PAMAM conjugates were then used to reduce and sequester Au seeds for the subsequent in situ growth of Au nanostars. The dendrimer-based magneto-plasmonic substrates containing the Au anisotropic nanophases were then investigated regarding their ability to monitor water quality through surface-enhanced Raman scattering (SERS) spectroscopy. As a proof-of-concept, the ensuing multifunctional materials were investigated as SERS probing systems to detect dithiocarbamate pesticides (ziram and thiram) dissolved in water samples. It was observed that the magneto-plasmonic hybrid materials enhance the Raman signal of these pesticides under variable operational conditions, suggesting the versatility of these systems for water quality monitoring. Moreover, a detailed analysis of the SERS data was accomplished to predict the adsorption profile of the dithiocarbamate pesticides to the Au surface.
Collapse
Affiliation(s)
- Tiago Fernandes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Natércia C T Martins
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Daniel-da-Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Xie W, Gan Y, Zhang Y, Wang P, Zhang J, Qian J, Zhang G, Wu Z. Transition-metal-doped hydrophilic ultrasmall iron oxide modulates MRI contrast performance for accurate diagnosis of orthotopic prostate cancer. J Mater Chem B 2022; 10:9613-9621. [PMID: 36331033 DOI: 10.1039/d2tb01860h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The FDA-approved iron oxide nanocrystals (IONs), as negative magnetic resonance imaging contrast agents (MRICAs), face challenges because of their low relaxation rate and coherent ferromagnetism. Although research has found that metal doping is an efficient approach to improve the magnetic property and MRI contrast performance of IONs, their systemic mechanism has not been fully explained. Herein, we fabricated a series of transition-metal-doped IONs and systemically explored their sizes, structures, and variation in magnetic properties, revealing the oxygen vacancy-mediated MRI contrast enhancement mechanism of transition-metal-doped IONs. Based on these, we found that Zn-doped IONs possess optimal T2 MRI contrast performance and further investigated their potential to diagnose in vivo orthotopic tumor as a T2 contrast agent. The results indicate that the use of Zn-doped IONs significantly enhances T2-weighted MRI signal intensity of orthotopic prostate tumor with low toxicity, which is beneficial for the accurate diagnosis of orthotopic tumor. Collectively, this work clearly illustrates the mechanism of contrast enhancement of transition-metal-doped IONs and provides a novel paradigm for developing a highly efficient T2 contrast agent.
Collapse
Affiliation(s)
- Wenteng Xie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuehao Gan
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ya'nan Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P. R. China. .,Institute of Biomedical Imaging Probe, Binzhou Medical University, Yantai 264003, P. R. China
| | - Peng Wang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P. R. China. .,Institute of Biomedical Imaging Probe, Binzhou Medical University, Yantai 264003, P. R. China
| | - Jia Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Junchao Qian
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P. R. China. .,Institute of Biomedical Imaging Probe, Binzhou Medical University, Yantai 264003, P. R. China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| |
Collapse
|
11
|
Magnetic Iron Nanoparticles: Synthesis, Surface Enhancements, and Biological Challenges. Processes (Basel) 2022. [DOI: 10.3390/pr10112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This review focuses on the role of magnetic nanoparticles (MNPs), their physicochemical properties, their potential applications, and their association with the consequent toxicological effects in complex biologic systems. These MNPs have generated an accelerated development and research movement in the last two decades. They are solving a large portion of problems in several industries, including cosmetics, pharmaceuticals, diagnostics, water remediation, photoelectronics, and information storage, to name a few. As a result, more MNPs are put into contact with biological organisms, including humans, via interacting with their cellular structures. This situation will require a deeper understanding of these particles’ full impact in interacting with complex biological systems, and even though extensive studies have been carried out on different biological systems discussing toxicology aspects of MNP systems used in biomedical applications, they give mixed and inconclusive results. Chemical agencies, such as the Registration, Evaluation, Authorization, and Restriction of Chemical substances (REACH) legislation for registration, evaluation, and authorization of substances and materials from the European Chemical Agency (ECHA), have held meetings to discuss the issue. However, nanomaterials (NMs) are being categorized by composition alone, ignoring the physicochemical properties and possible risks that their size, stability, crystallinity, and morphology could bring to health. Although several initiatives are being discussed around the world for the correct management and disposal of these materials, thanks to the extensive work of researchers everywhere addressing the issue of related biological impacts and concerns, and a new nanoethics and nanosafety branch to help clarify and bring together information about the impact of nanoparticles, more questions than answers have arisen regarding the behavior of MNPs with a wide range of effects in the same tissue. The generation of a consolidative framework of these biological behaviors is necessary to allow future applications to be manageable.
Collapse
|
12
|
Yang R, Ouyang Z, Guo H, Qu J, Xia J, Shen M, Shi X. Microfluidic synthesis of intelligent nanoclusters of ultrasmall iron oxide nanoparticles with improved tumor microenvironment regulation for dynamic MR imaging-guided tumor photothermo-chemo-chemodynamic therapy. NANO TODAY 2022; 46:101615. [DOI: 10.1016/j.nantod.2022.101615] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Komsthöft T, Bovone G, Bernhard S, Tibbitt MW. Polymer functionalization of inorganic nanoparticles for biomedical applications. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
15
|
Ambrosio N, Voci S, Gagliardi A, Palma E, Fresta M, Cosco D. Application of Biocompatible Drug Delivery Nanosystems for the Treatment of Naturally Occurring Cancer in Dogs. J Funct Biomater 2022; 13:jfb13030116. [PMID: 35997454 PMCID: PMC9397006 DOI: 10.3390/jfb13030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Cancer is a common disease in dogs, with a growing incidence related to the age of the animal. Nanotechnology is being employed in the veterinary field in the same manner as in human therapy. Aim: This review focuses on the application of biocompatible nanocarriers for the treatment of canine cancer, paying attention to the experimental studies performed on dogs with spontaneously occurring cancer. Methods: The most important experimental investigations based on the use of lipid and non-lipid nanosystems proposed for the treatment of canine cancer, such as liposomes and polymeric nanoparticles containing doxorubicin, paclitaxel and cisplatin, are described and their in vivo fate and antitumor features discussed. Conclusions: Dogs affected by spontaneous cancers are useful models for evaluating the efficacy of drug delivery systems containing antitumor compounds.
Collapse
|
16
|
Li G, Guo Y, Guo R, Shi X, Shen M. LAPONITE® nanodisk-based platforms for cancer diagnosis and therapy. MATERIALS ADVANCES 2022; 3:6742-6752. [DOI: 10.1039/d2ma00637e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Recent advances in the development of LAPONITE® nanodisk-based platforms for tumor chemotherapy and phototherapy, imaging, and theranostics have been reviewed.
Collapse
Affiliation(s)
- Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-biomaterials and Regenerative Medicine, College of Biological Science and Medical, Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-biomaterials and Regenerative Medicine, College of Biological Science and Medical, Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-biomaterials and Regenerative Medicine, College of Biological Science and Medical, Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-biomaterials and Regenerative Medicine, College of Biological Science and Medical, Engineering, Donghua University, Shanghai 201620, P. R. China
- CQM – Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-biomaterials and Regenerative Medicine, College of Biological Science and Medical, Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
17
|
Woo S, Kim S, Kim H, Cheon YW, Yoon S, Oh JH, Park J. Charge-Modulated Synthesis of Highly Stable Iron Oxide Nanoparticles for In Vitro and In Vivo Toxicity Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3068. [PMID: 34835832 PMCID: PMC8624538 DOI: 10.3390/nano11113068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/14/2023]
Abstract
The surface charge of iron oxide nanoparticles (IONPs) plays a critical role in the interactions between nanoparticles and biological components, which significantly affects their toxicity in vitro and in vivo. In this study, we synthesized three differently charged IONPs (negative, neutral, and positive) based on catechol-derived dopamine, polyethylene glycol, carboxylic acid, and amine groups, via reversible addition-fragmentation chain transfer-mediated polymerization (RAFT polymerization) and ligand exchange. The zeta potentials of the negative, neutral, and positive IONPs were -39, -0.6, and +32 mV, respectively, and all three IONPs showed long-term colloidal stability for three months in an aqueous solution without agglomeration. The cytotoxicity of the IONPs was studied by analyzing cell viability and morphological alteration in three human cell lines, A549, Huh-7, and SH-SY5Y. Neither IONP caused significant cellular damage in any of the three cell lines. Furthermore, the IONPs showed no acute toxicity in BALB/c mice, in hematological and histological analyses. These results indicate that our charged IONPs, having high colloidal stability and biocompatibility, are viable for bio-applications.
Collapse
Affiliation(s)
- Sunyoung Woo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (S.W.); (H.K.)
| | - Soojin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon 34114, Korea;
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyunhong Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (S.W.); (H.K.)
| | - Young Woo Cheon
- Department of Plastic and Reconstructive Surgery, Gachon University Gil Medical Center, Incheon 21565, Korea;
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon 34114, Korea;
- Department of Human and Environmental Toxicology, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon 34114, Korea;
- Department of Human and Environmental Toxicology, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jongnam Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; (S.W.); (H.K.)
- Departmento of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|