1
|
Eads CN, Wang W, Küst U, Prumbs J, Temperton RH, Scardamaglia M, Schnadt J, Knudsen J, Shavorskiy A. Resolving active species during the carbon monoxide oxidation over Pt(111) on the microsecond timescale. Nat Commun 2025; 16:1216. [PMID: 39890813 PMCID: PMC11785939 DOI: 10.1038/s41467-025-56576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
Catalytic studies traditionally rely on steady-state conditions resulting in time-averaged datasets that do not differentiate between active and spectator species. This limitation can cause misinterpretations of catalytic function, as the signal of short-lived intermediates responsible for producing desired reaction products is often masked by more intense spectator species. Time-resolved ambient pressure X-ray photoelectron spectroscopy (tr-APXPS) mitigates this issue by combining microsecond time resolution under reaction conditions. Using tr-APXPS, we investigate the oxidation of CO over Pt(111) by concurrently tracking reaction products, surface intermediates, and catalyst response. Our findings reveal that chemisorbed oxygen, rather than Pt surface oxide, is the main species reacting with CO to form CO2, supporting a primary Langmuir-Hinshelwood mechanism. The results shed new light on a heavily-debated reaction in catalysis. Beyond using CO pulses to determine active species, we demonstrate how careful tuning of pulsing parameters can be used for dynamic catalyst operation to enhance CO2 formation.
Collapse
Affiliation(s)
| | - Weijia Wang
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Ulrike Küst
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Julia Prumbs
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, Sweden
| | | | | | - Joachim Schnadt
- MAX IV Laboratory, Lund University, Lund, Sweden
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Jan Knudsen
- MAX IV Laboratory, Lund University, Lund, Sweden
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | | |
Collapse
|
2
|
Chien TE, Hohmann L, Harding DJ. Time-resolved surface reaction kinetics in the pressure gap. Faraday Discuss 2024; 251:395-411. [PMID: 38757526 DOI: 10.1039/d3fd00158j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We extend the use of our recently developed Near-Ambient Pressure Velocity Map Imaging (NAP-VMI) technique to study the kinetics and dynamics of catalytic reactions in the pressure gap. As an example, we show that NAP-VMI combined with molecular beam surface scattering allows the direct measurement of time- and velocity-resolved kinetics of the scattering and oxidation of CO on the Pd(110) surface with oxygen pressures at the surface up to 1 × 10-5 mbar, where different metastable surface structures form. Our results show that the c(2 × 4) oxide structure formed at low O2 pressure is highly active for CO oxidation. The velocity distribution of the CO2 products shows the presence of two reaction channels, which we attribute to reactions starting from two distinct but rapidly interconverting CO binding sites. The effective CO oxidation reaction activation energy is Er = (1.0 ± 0.13) eV. The CO2 production is suppressed at higher O2 pressure due to the number of antiphase domain boundaries increasing, and the missing row sites are filled by O-atoms at O2 pressures approaching 1 × 10-6 mbar. Filling of these sites by O-atoms reduces the CO surface lifetime, meaning the surface oxide is inactive for CO oxidation. We briefly outline further developments planned for the NAP-VMI and its application to other types of experiments.
Collapse
Affiliation(s)
- Tzu-En Chien
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm 100 44, Sweden.
| | - Lea Hohmann
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm 100 44, Sweden.
| | - Dan J Harding
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm 100 44, Sweden.
| |
Collapse
|
3
|
Zhu X, Huang S, Ma S, Liu M, Kim YR, Xu Y, Luo K. Facile Synthesis of Multifunctional Mesoporous Starch-Based Microparticle for Effective Hemostasis and Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30742-30754. [PMID: 38841831 DOI: 10.1021/acsami.4c03480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Uncontrolled hemorrhage and infection are the principal causes of mortality associated with trauma in both military and civilian medical settings. Modified starch granules have emerged as a safe hemostatic agent for irregular and noncompressible wounds, but their performance is constrained by limited hemostasis efficiency and modest antibacterial activity. This study reported a directed self-assembly approach for a multifunctional mesoporous starch-based microparticle loaded with chitosan and calcium ions (Ca@MSMP) used for rapid hemostasis and wound healing. Directed self-assembly of uniform Ca@MSMP with a hierarchical hollow structure in the presence of chitosan was confirmed by scanning electron microscopy (SEM) analysis and pore structure analysis. The resulting Ca@MSMP exhibited a well-defined spherical shape and uniform size of 1 μm and demonstrated excellent antibacterial activity (>95%) without hemolytic activity. Importantly, Ca@MSMP enhanced blood coagulation and platelet aggregation via the synergistic effect of rapid calcium release and chitosan-mediated electrostatic interactions, leading to a significant decrease in blood loss and reduction in hemostasis time in rat tail amputation and liver injury models. In comparative analyses, Ca@MSMP significantly outperformed the commercial hemostatic agent Quickclean, notably enhancing the healing of full-thickness skin wounds in vivo by effectively preventing infection. These results underscore the potential of this innovative hemostatic material in diverse clinical scenarios, offering effective solutions for the management of bleeding in wounds that are irregularly shaped and noncompressible.
Collapse
Affiliation(s)
- Xiaoning Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Shuyao Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Shuang Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Mengyao Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Young-Rok Kim
- Institute of Life Science and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, South Korea
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| |
Collapse
|
4
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
5
|
D’Acunto G, Tsyshevsky R, Shayesteh P, Gallet JJ, Bournel F, Rochet F, Pinsard I, Timm R, Head AR, Kuklja M, Schnadt J. Bimolecular Reaction Mechanism in the Amido Complex-Based Atomic Layer Deposition of HfO 2. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:529-538. [PMID: 36711051 PMCID: PMC9879184 DOI: 10.1021/acs.chemmater.2c02947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/18/2022] [Indexed: 06/16/2023]
Abstract
The surface chemistry of the initial growth during the first or first few precursor cycles in atomic layer deposition is decisive for how the growth proceeds later on and thus for the quality of the thin films grown. Yet, although general schemes of the surface chemistry of atomic layer deposition have been developed for many processes and precursors, in many cases, knowledge of this surface chemistry remains far from complete. For the particular case of HfO2 atomic layer deposition on a SiO2 surface from an alkylamido-hafnium precursor and water, we address this lack by carrying out an operando atomic layer deposition experiment during the first cycle of atomic layer deposition. Ambient-pressure X-ray photoelectron spectroscopy and density functional theory together show that the decomposition of the metal precursor on the stoichiometric SiO2 surface in the first half-cycle of atomic layer deposition proceeds via a bimolecular reaction mechanism. The reaction leads to the formation of Hf-bonded methyl methylene imine and free dimethylamine. In addition, ligand exchange takes place involving the surface hydroxyls adsorbed at defect sites of the SiO2 surface.
Collapse
Affiliation(s)
- Giulio D’Acunto
- Department
of Physics, Division of Synchrotron Radiation Research, and NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
| | - Roman Tsyshevsky
- Department
of Materials Science and Engineering, University
of Maryland, College Park, Maryland 20742, United States
| | - Payam Shayesteh
- Department
of Physics, Division of Synchrotron Radiation Research, and NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
| | - Jean-Jacques Gallet
- CNRS
Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
- Synchrotron
SOLEIL, L’Orme des Merisiers,
Saint-Aubin, BP 48, 91192 Gif-sur-Yvette
Cedex, France
| | - Fabrice Bournel
- CNRS
Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
- Synchrotron
SOLEIL, L’Orme des Merisiers,
Saint-Aubin, BP 48, 91192 Gif-sur-Yvette
Cedex, France
| | - François Rochet
- CNRS
Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Indiana Pinsard
- Department
of Physics, Division of Synchrotron Radiation Research, and NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
| | - Rainer Timm
- Department
of Physics, Division of Synchrotron Radiation Research, and NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
| | - Ashley R. Head
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, P.O. Box 5000, Upton, New
York 11973-5000, United
States
| | - Maija Kuklja
- Department
of Materials Science and Engineering, University
of Maryland, College Park, Maryland 20742, United States
| | - Joachim Schnadt
- Department
of Physics, Division of Synchrotron Radiation Research, and NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
- MAX IV Laboratory, Lund University, Box 118, 221 00 Lund, Sweden
| |
Collapse
|
6
|
Boix V, Scardamaglia M, Gallo T, D’Acunto G, Strømsheim MD, Cavalca F, Zhu S, Shavorskiy A, Schnadt J, Knudsen J. Following the Kinetics of Undercover Catalysis with APXPS and the Role of Hydrogen as an Intercalation Promoter. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Virginia Boix
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22362 Lund, Sweden
- NanoLund, Lund University, 22362 Lund, Sweden
| | | | - Tamires Gallo
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22362 Lund, Sweden
| | - Giulio D’Acunto
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22362 Lund, Sweden
- NanoLund, Lund University, 22362 Lund, Sweden
| | - Marie Døvre Strømsheim
- Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | - Suyun Zhu
- MAX IV Laboratory, Lund University, 22484 Lund, Sweden
| | | | - Joachim Schnadt
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22362 Lund, Sweden
- MAX IV Laboratory, Lund University, 22484 Lund, Sweden
- NanoLund, Lund University, 22362 Lund, Sweden
| | - Jan Knudsen
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22362 Lund, Sweden
- MAX IV Laboratory, Lund University, 22484 Lund, Sweden
- NanoLund, Lund University, 22362 Lund, Sweden
| |
Collapse
|
7
|
Redekop EA, Yablonsky GS, Gleaves JT. Truth is, we all are transients: A perspective on the time-dependent nature of reactions and those who study them. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Pérez-Dieste V. Characterization of model and real catalysts by APXPS. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227301005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In this contribution, I first briefly summarize some of the recent advances relevant for the investigation of heterogeneous catalysis with Ambient Pressure X-ray Photoelectron Spectroscopy (APXPS). In the second part, two examples of the research done at the CIRCE beamline of the synchrotron ALBA are described: CO oxidation on a model curved crystal Pd(111) catalyst and methanol steam reforming on powder bimetallic supported catalysts, PdCu/ monoclinic and cubic zirconia.
Collapse
|
9
|
Flavell W. Spiers Memorial Lecture: Prospects for photoelectron spectroscopy. Faraday Discuss 2022; 236:9-57. [DOI: 10.1039/d2fd00071g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An overview is presented of recent advances in photoelectron spectroscopy, focussing on advances in in situ and time-resolved measurements, and in extending the sampling depth of the technique. The future...
Collapse
|