1
|
Han JY, Kim K, Lee C, Yoon DK. Controlled Mesoscopic Growth of Polymeric Fibers Using Liquid Crystal Template. Macromol Rapid Commun 2025; 46:e2300303. [PMID: 37464964 DOI: 10.1002/marc.202300303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
Orientation-controlled polymeric fiber is one of the most exciting research topics to rationalize the multifunctionality for various applications. In order to realize this goal, the growth of polymeric fibers should be controlled using various techniques like extrusion, molding, drawing, and self-assembly. Among the various candidates to fabricate the orientation-controlled polymeric fibers, the template-assisted assembly guided by a liquid crystal (LC) matrix is the most promising because the template can be manipulated easily with various methods like surface anchoring, rubbing, geometric confinement, and electric field. This review introduces the recent progress toward the directed growth of polymeric fibers using the LC template. Three representative LC-templated polymerization techniques to fabricate fibers include chemical or physical polymerization from the monomers mixed in LC matrix, patterned fibers formed from LC-templated reactive mesogens, and orientation-controlled nanofibers by infiltrating vaporized monomers between LC molecules. The orientation-controlled polymeric fibers will be used in electro-optical switching tools, tunable hydrophilic or hydrophobic surfaces, and control of phosphorescence, which can open a way to design, fabricate, and modulate nano- to micron-scale fibers with various functions on demand.
Collapse
Affiliation(s)
- Jeong Yeon Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kyuhwan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changjae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Han Y, Seo J, Lee DH, Yoo H. IGZO-Based Electronic Device Application: Advancements in Gas Sensor, Logic Circuit, Biosensor, Neuromorphic Device, and Photodetector Technologies. MICROMACHINES 2025; 16:118. [PMID: 40047564 PMCID: PMC11857157 DOI: 10.3390/mi16020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 03/09/2025]
Abstract
Metal oxide semiconductors, such as indium gallium zinc oxide (IGZO), have attracted significant attention from researchers in the fields of liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) for decades. This interest is driven by their high electron mobility of over ~10 cm2/V·s and excellent transmittance of more than ~80%. Amorphous IGZO (a-IGZO) offers additional advantages, including compatibility with various processes and flexibility making it suitable for applications in flexible and wearable devices. Furthermore, IGZO-based thin-film transistors (TFTs) exhibit high uniformity and high-speed switching behavior, resulting in low power consumption due to their low leakage current. These advantages position IGZO not only as a key material in display technologies but also as a candidate for various next-generation electronic devices. This review paper provides a comprehensive overview of IGZO-based electronics, including applications in gas sensors, biosensors, and photosensors. Additionally, it emphasizes the potential of IGZO for implementing logic gates. Finally, the paper discusses IGZO-based neuromorphic devices and their promise in overcoming the limitations of the conventional von Neumann computing architecture.
Collapse
Affiliation(s)
- Youngmin Han
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea;
| | - Juhyung Seo
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Dong Hyun Lee
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea;
| | - Hocheon Yoo
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
3
|
Han JY, Noh B, Lee G, Lee C, Lee KJ, Yoon DK. Fabrication of Zigzag Parylene Nanofibers in Liquid Crystals with Electric Field-Induced Defect Structures. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11125-11133. [PMID: 38373224 DOI: 10.1021/acsami.4c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Liquid crystals (LCs) have been adopted to induce tunable physical properties that dynamically originated from their unique intrinsic properties responding to external stimuli, such as surface anchoring condition and applied electric field, which enables them to be the template for aligning functional guest materials. We fabricate the fiber array from the electrically modulated (in-plain) nematic LC template using the chemical vapor polymerization (CVP) method. Under an electric field, an induced defect structure with a winding number of -1/2 contains a periodic zigzag disclination line. It is known that LC defect structures can trap the guest materials, such as particles and chemicals. However, the resulting fibers grow along the LC directors, not trapped in the defects. To show the versatility of our platform, nanofibers are fabricated on patterned electrodes representing the alphabets 'CVP.' In addition, the semifluorinated moieties are added to fibers to provide a hydrophobic surface. The resultant orientation-controlled fibers will be used in controllable smart surfaces that can be used in sensors, electronics, photonics, and biomimetic surfaces.
Collapse
Affiliation(s)
- Jeong Yeon Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Byeongil Noh
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gunoh Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Changjae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyung Jin Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Park JM, Lee H, Lee G, Jang SC, Chang YH, Hong H, Chung KB, Lee KJ, Kim DH, Kim HS. Organic/Inorganic Hybrid Top-Gate Transistors with Ultrahigh Electron Mobility via Enhanced Electron Pathways. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1525-1534. [PMID: 36538477 DOI: 10.1021/acsami.2c16881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The top-gate structure is currently adopted in various flat-panel displays because of its diverse advantages such as passivation from the external environment and process compatibility with industries. However, the mobility of the currently commercialized top-gate oxide thin-film transistors (TFTs) is insufficient to drive ultrahigh-resolution displays. Accordingly, this work suggests metal-capped Zn-Ba-Sn-O transistors with top-gate structures for inducing mobility-enhancing effects. The fabricated top-gate device contains para-xylylene (PPx), which is deposited by a low-temperature chemical vapor deposition (CVD) process, as a dielectric layer and exhibits excellent interfacial and dielectric properties. A technology computer-aided design (TCAD) device simulation reveals that the mobility enhancement in the Al-capped (Zn,Ba)SnO3 (ZBTO) TFT is attributed not only to the increase in the electron concentration, which is induced by band engineering due to the Al work function but also to the increased electron velocity due to the redistribution of the lateral electric field. As a result, the mobility of the Al-capped top-gate ZBTO device is 5 times higher (∼110 cm2/Vs) than that of the reference device. These results demonstrate the applicability of top-gate oxide TFTs with ultrahigh mobility in a wide range of applications, such as for high-resolution, large-area, and flexible displays.
Collapse
Affiliation(s)
- Ji-Min Park
- Department of Materials Science and Engineering, Chungnam National University, Daejeon34134, Republic of Korea
| | - Hyunkyu Lee
- School of Electrical Engineering, Kookmin University, Seoul02707, Republic of Korea
| | - GunOh Lee
- Department of Chemical Engineering & Applied Chemistry, Chungnam National University, Daejeon34134, Republic of Korea
| | - Seong Cheol Jang
- Department of Materials Science and Engineering, Chungnam National University, Daejeon34134, Republic of Korea
| | - Yun Hee Chang
- Department of Materials Science and Engineering, Chungnam National University, Daejeon34134, Republic of Korea
| | - Hyunmin Hong
- Division of Physics and Semiconductor Science, Dongguk University, Seoul04620, Republic of Korea
| | - Kwun-Bum Chung
- Division of Physics and Semiconductor Science, Dongguk University, Seoul04620, Republic of Korea
| | - Kyung Jin Lee
- Department of Chemical Engineering & Applied Chemistry, Chungnam National University, Daejeon34134, Republic of Korea
| | - Dae Hwan Kim
- School of Electrical Engineering, Kookmin University, Seoul02707, Republic of Korea
| | - Hyun-Suk Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon34134, Republic of Korea
| |
Collapse
|
5
|
Zhang B, Zu W, Cui X, Zhou J, Fu Y, Chen J. Preparation of Hydrophobic Metal–Organic Frameworks/Parylene Composites as a Platform for Enhanced Catalytic Performance. Inorg Chem 2022; 61:18303-18310. [DOI: 10.1021/acs.inorgchem.2c03294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bing Zhang
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, College of Chemistry and Chemical Engineering, Tarim University, Xinjiang Uygur Autonomous Region, Alaer 843300, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- Key Laboratory for Anisotropy and Texture of Materials School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Wenting Zu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xingchen Cui
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jun Zhou
- Key Laboratory for Anisotropy and Texture of Materials School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Junyi Chen
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, College of Chemistry and Chemical Engineering, Tarim University, Xinjiang Uygur Autonomous Region, Alaer 843300, China
| |
Collapse
|