1
|
Shen L, Kong T, Yu J, Nan F, Wu Z, Li B, Li J, Yu WW. Self-polymerized metal-phenolic ionogel with multifunctional properties towards theranostic wearable electronics. Acta Biomater 2025:S1742-7061(25)00305-8. [PMID: 40311991 DOI: 10.1016/j.actbio.2025.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
With the rapid development of wearable technology toward integrated diagnostics and therapy, wearable electronic materials are required to possess a range of properties, such as stretchable, compressible, conductive, anti-freezing, biocompatible, and antimicrobial properties. Metal-phenolic dual-network ionogel (MP-DN ionogel) was thus prepared by using FeIII-tannic acid and H2O2 as dual self-catalysis system to trigger the polymerization of hydrophilic ionic liquid monomer and hydrophobic acrylamide glycidyl ester monomer. The prepared ionogel showed well-rounded properties including high conductivity, good self-healing, anti-freezing (remains ice-free at -20 °C), anti-swelling, effective antibacterial property (anti-bacterial ratio > 99.9 %), and good cell and tissue biocompatibility. The ionogel exhibited the capability of recording electrocardiogram (ECG), electromyography (EMG), monitoring motion of finger bending and promoting wound healing. The present work provides a simple one-pot strategy to prepare multifunctional ionogels, to meet various application conditions for the next-generation theranostics wearable electronic devices. STATEMENT OF SIGNIFICANCE: 1. A dual-network ionogel with tuned mechanical properties was prepared using a simple one-pot method. 2. The ionogel exhibited superior conductivity, antifreeze, anti-swelling, good adhesion and antibacterial properties. 3. The prepared ionogel demonstrated good performance in rat ECG and EMG signal and high sensitivity to finger bending motions. 4. The ionogel could promote the healing of infected wounds. 5. Offer valuable guidance for the theranostic wearable electronics.
Collapse
Affiliation(s)
- Lanbo Shen
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China; School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; Department of Biomaterials, School and Hospital of Stomatology, Shandong University, Jinan 250012, China
| | - Tingting Kong
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China; Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Jiahao Yu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Fuchun Nan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zilong Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bin Li
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China; Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Shandong University, Jinan 250012, China.
| | - William W Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
2
|
Roy A, Afshari R, Jain S, Zheng Y, Lin MH, Zenkar S, Yin J, Chen J, Peppas NA, Annabi N. Advances in conducting nanocomposite hydrogels for wearable biomonitoring. Chem Soc Rev 2025; 54:2595-2652. [PMID: 39927792 DOI: 10.1039/d4cs00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Recent advancements in wearable biosensors and bioelectronics have led to innovative designs for personalized health management devices, with biocompatible conducting nanocomposite hydrogels emerging as a promising building block for soft electronics engineering. In this review, we provide a comprehensive framework for advancing biosensors using these engineered nanocomposite hydrogels, highlighting their unique properties such as high electrical conductivity, flexibility, self-healing, biocompatibility, biodegradability, and tunable architecture, broadening their biomedical applications. We summarize key properties of nanocomposite hydrogels for thermal, biomechanical, electrophysiological, and biochemical sensing applications on the human body, recent progress in nanocomposite hydrogel design and synthesis, and the latest technologies in developing flexible and wearable devices. This review covers various sensor types, including strain, physiological, and electrochemical sensors, and explores their potential applications in personalized healthcare, from daily activity monitoring to versatile electronic skin applications. Furthermore, we highlight the blueprints of design, working procedures, performance, detection limits, and sensitivity of these soft devices. Finally, we address challenges, prospects, and future outlook for advanced nanocomposite hydrogels in wearable sensors, aiming to provide a comprehensive overview of their current state and future potential in healthcare applications.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Min-Hsuan Lin
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Shea Zenkar
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
| | - Junyi Yin
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, 90095, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
3
|
Belay AN, Guo R, Ahmadian Koudakan P, Pan S. Biointerface engineering of flexible and wearable electronics. Chem Commun (Camb) 2025; 61:2858-2877. [PMID: 39838849 DOI: 10.1039/d4cc06078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Biointerface sensing is a cutting-edge interdisciplinary field that merges conceptual and practical aspects. Wearable bioelectronics enable efficient interaction and close contact with biological components such as tissues and organs, paving the way for a wide range of medical applications, including personal health monitoring and medical intervention. To be applicable in real-world settings, the patches must be stable and adhere to the skin without causing discomfort or allergies in both wet and dry conditions, as well as other desirable features such as being ultra-soft, thin, flexible, and stretchable. Biosensors have emerged as promising tools primarily used to directly detect biological and electrophysiological signals, enhancing the efficacy of personalized medical treatments and enabling accurate tracking of human well-being. This review highlights the engineering of skin-tissue surfaces/interfaces and their interactions with wearable patches, aiming for both a broad and in-depth understanding of the mechanical and physicochemical properties required for the advancement of flexible and wearable skin patches. Specifically, the advantages of flexible bioelectronics and sensors with optimized surface geometry for long-term diagnosis are discussed. This insight aims to guide the future development of functional materials that can interact with human tissue in a controlled manner. Finally, we provide perspectives on the challenges and potential applications of biointerface engineering in wearable devices.
Collapse
Affiliation(s)
- Alebel Nibret Belay
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Rui Guo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | | | - Shuaijun Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
4
|
Cui L, Wang W, Zheng J, Hu C, Zhu Z, Liu B. Wide-humidity, anti-freezing and stretchable multifunctional conductive carboxymethyl cellulose-based hydrogels for flexible wearable strain sensors and arrays. Carbohydr Polym 2024; 342:122406. [PMID: 39048200 DOI: 10.1016/j.carbpol.2024.122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Hydrogels play an important role in the design and fabrication of wearable sensors with outstanding flexibility, high sensitivity and versatility. Since hydrogels lose and absorb water during changes in humidity and temperature, it is critical and challenging to obtain hydrogels that function properly under different environmental conditions. Herein, a dual network hydrogel based on tannic acid (TA) reinforced polyacrylamide (PAM) and sodium carboxymethylcellulose (CMC) was constructed, while the introduction of the green solvents Solketal and LiCl endowed the hydrogel with greater possibilities for further modification to improve the water content and consistency of the mechanical properties over 30-90 % RH. This composite hydrogel (PTSL) has long-term stability, excellent mechanical strength, and freezing resistance. As strain sensors, they are linear over the entire strain range (R2 = 0.994) and have a high sensitivity (GF = 2.52 over 0-680 % strain range). Furthermore, the hydrogel's exceptional electrical conductivity and freezing resistance are a result of the synergistic effect of Solketal and LiCl, which intensifies the contact between the water molecules and the colloidal phase. This research could address the suitability of hydrogels over a wide range of humidity and temperature, suggesting great applications for smart flexible wearable electronics in harsh environmental conditions.
Collapse
Affiliation(s)
- Liangliang Cui
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Department of Textile &Garment Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Jian Zheng
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhijia Zhu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| | - Baojiang Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
5
|
Liang S, Chen H, Chen Y, Ali A, Yao S. Multi-dynamic-bond cross-linked antibacterial and adhesive hydrogel based on boronated chitosan derivative and loaded with peptides from Periplaneta americana with on-demand removability. Int J Biol Macromol 2024; 273:133094. [PMID: 38878926 DOI: 10.1016/j.ijbiomac.2024.133094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
The design and development of a bio-adhesive hydrogel with on-demand removability and excellent antibacterial activities are meaningful to achieve high wound closure effectiveness and post-wound-closure care, which is desirable in clinical applications. In this work, a series of adhesive antioxidant antibacterial hydrogels containing peptides from Periplaneta americana (PAP) were prepared through multi-dynamic-bond cross-linking among 3,4-dihydroxybenzaldehyde (DBA) containing catechol and aldehyde groups and chitosan grafted with 3-carboxy-4-fluorophenylboronic acid (CS-FPBA) to enable the effective adhesion of skin tissues and prevention of bacterial infection of wound. PAP was derived from alcohol-extracted residues generated during the pharmaceutical process, aiming to minimize resource wastage and achieve the high-value development of such a medicinal insect. The hydrogel was prepared by freezing-thawing with no toxic crosslinkers. The multi-dynamic-bond cross-linking of dynamic borate ester bonds and dynamic Schiff base bonds can achieve reversible breakage and re-formation and the adhesive strength of CS-FPBA-DBA-P-gel treated with a 20 % glucose solution dramatically decreased from 3.79 kPa to 0.35 kPa within 10 s. Additionally, the newly developed hydrogel presents ideal biocompatibility, hemostasis and antibacterial activity against Staphylococcus aureus and Escherichia coli compared to commercial chitosan gel (approximately 50 % higher inhibition rate), demonstrating its great potential in dealing with infected full-thickness skin wounds.
Collapse
Affiliation(s)
- Siwei Liang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hangping Chen
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ahamd Ali
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Su G, Wang N, Liu Y, Zhang R, Li Z, Deng Y, Tang BZ. From Fluorescence-Transfer-Lightening-Printing-Assisted Conductive Adhesive Nanocomposite Hydrogels toward Wearable Interactive Optical Information-Electronic Strain Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400085. [PMID: 38469972 DOI: 10.1002/adma.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Indexed: 03/13/2024]
Abstract
The interactive flexible device, which monitors the human motion in optical and electrical synergistic modes, has attracted growing attention recently. The incorporation of information attribute within the optical signal is deemed advantageous for improving the interactive efficiency. Therefore, the development of wearable optical information-electronic strain sensors holds substantial promise, but integrating and synergizing various functions and realizing strain-mediated information transformation keep challenging. Herein, an amylopectin (AP) modified nanoclay/polyacrylamide-based nanocomposite (NC) hydrogel and an aggregation-induced-emission-active ink are fabricated. Through the fluorescence-transfer printing of the ink onto the hydrogel film in different strains with nested multiple symbolic information, a wearable interactive fluorescent information-electronic strain sensor is developed. In the sensor, the nanoclay plays a synergistic "one-stone-three-birds" role, contributing to "lightening" fluorescence (≈80 times emission intensity enhancement), ionic conductivity, and excellent stretchability (>1000%). The sensor has high biocompatibility, resilience (elastic recovery ratio: 97.8%), and strain sensitivity (gauge factor (GF): 10.9). Additionally, the AP endows the sensor with skin adhesiveness. The sensor can achieve electrical monitoring of human joint movements while displaying interactive fluorescent information transformation. This research poses an efficient strategy to develop multifunctional materials and provides a general platform for achieving next-generation interactive devices with prospective applications in wearable devices, human-machine interfaces, and artificial intelligence.
Collapse
Affiliation(s)
- Gongmeiyue Su
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ni Wang
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yangkun Liu
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ruoyao Zhang
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhao Li
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yulin Deng
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen(CUHK-Shenzhen), Guangdong, 518172, P. R. China
| |
Collapse
|
7
|
Wu Q, Chen A, Xu Y, Han S, Zhang J, Chen Y, Hang J, Yang X, Guan L. Multiple physical crosslinked highly adhesive and conductive hydrogels for human motion and electrophysiological signal monitoring. SOFT MATTER 2024; 20:3666-3675. [PMID: 38623704 DOI: 10.1039/d4sm00195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Hydrogel-based flexible electronic devices serve as a next-generation bridge for human-machine interaction and find extensive applications in clinical therapy, military equipment, and wearable devices. However, the mechanical mismatch between hydrogels and human tissues, coupled with the failure of conformal interfaces, hinders the transmission of information between living organisms and flexible devices, which resulted in the instability and low fidelity of signals, especially in the acquisition of electromyographic (EMG) and electrocardiographic (ECG) signals. In this study, we designed an ion-conductive hydrogel (ICHgel) utilizing multiple physical interactions, successfully applied for human motion monitoring and the collection of epidermal physiological signals. By incorporating fumed silica (F-SiO2) nanoparticles and calcium chloride into an interpenetrating network (IPN) composed of polyvinyl alcohol (PVA) and polyacrylamide (AAm)/acrylic acid (AA) chains, the ICHgel exhibited exceptional tunable stretchability (>1450% strain) and conductivity (10.58 ± 0.85 S m-1). Additionally, the outstanding adhesion of the ICHgel proved to be a critical factor for effective communication between epidermal tissues and flexible devices. Demonstrating its capability to acquire stable electromechanical signals, the ICHgel was attached to different parts of the human body. More importantly, as a flexible electrode, the ICHgel outperformed commercial Ag/AgCl electrodes in the collection of ECG and EMG signals. In summary, the synthesized ICHgel with its outstanding conformal interface capabilities and mechanical adaptability paves the way for enhanced human-machine interaction, fostering the development of flexible electronic devices.
Collapse
Affiliation(s)
- Qirui Wu
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, Fujian, P.R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, Fujian, P.R. China.
| | - Anbang Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, Fujian, P.R. China.
| | - Yidan Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui, P.R. China
| | - Songjiu Han
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, Fujian, P.R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, Fujian, P.R. China.
| | - Jiayu Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, Fujian, P.R. China.
| | - Yujia Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, Fujian, P.R. China.
| | - Jianren Hang
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, Fujian, P.R. China
| | - Xiaoxiang Yang
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, Fujian, P.R. China
| | - Lunhui Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, Fujian, P.R. China.
| |
Collapse
|
8
|
Kushwaha R, Dey S, Gupta K, Mandal BB, Das D. Secondary Chemical Cross-Linking to Improve Mechanical Properties in a Multifaceted Biocompatible Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5183-5195. [PMID: 38235678 DOI: 10.1021/acsami.3c18247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A new conductive and transparent organohydrogel is developed with high stretchability, excellent mechanical, self-healing, antifreezing, and adhesive properties. A simple one-pot polymerization method is used to create polyacrylamide cross-linked through N,N'-methylenebis(acrylamide) (MBAA) and divinylbenzene (DVB). The dual chemical cross-linked gel network is complemented by several physical cross-links via hydrogen bonding and π-π interaction. Multiple chemical and physical cross-links are used to construct the gel network that allows toughness (171 kPa), low modulus (≈45 kPa), excellent stretchability (>1100%), and self-healing ability. The use of appropriate proportions of the water/glycerol binary solvent system ensures efficient environment tolerance (-20 to 40 °C). Phytic acid is used as a conductive filler that provides excellent conductivity and contributes to the physical cross-linking. Dopamine is incorporated in the gel matrix, which endows excellent adhesive property of the gel. The organohydrogel-based strain sensors are developed with state-independent properties, highly linear dependence, and excellent antifatigue performance (>100 cycles). Moreover, during the practical wearable sensing tests, human motions can be detected, including speaking, smiling, and joint movement. Additionally, the sensor is biocompatible, indicating the potential applications for the next generation of epidermal sensors.
Collapse
Affiliation(s)
- Ritvika Kushwaha
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, Assam, India
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kanika Gupta
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, Assam, India
| | - Biman B Mandal
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, Assam, India
| |
Collapse
|
9
|
Zhang X, Jia C, Zhang J, Zhang L, Liu X. Smart Aqueous Zinc Ion Battery: Operation Principles and Design Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305201. [PMID: 37949674 PMCID: PMC10787087 DOI: 10.1002/advs.202305201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Indexed: 11/12/2023]
Abstract
The zinc ion battery (ZIB) as a promising energy storage device has attracted great attention due to its high safety, low cost, high capacity, and the integrated smart functions. Herein, the working principles of smart responses, smart self-charging, smart electrochromic as well as smart integration of the battery are summarized. Thus, this review enables to inspire researchers to design the novel functional battery devices for extending their application prospects. In addition, the critical factors associated with the performance of the smart ZIBs are comprehensively collected and discussed from the viewpoint of the intellectualized design. A profound understanding for correlating the design philosophy in cathode materials and electrolytes with the electrode interface is provided. To address the current challenging issues and the development of smart ZIB systems, a wide variety of emerging strategies regarding the integrated battery system is finally prospected.
Collapse
Affiliation(s)
- Xiaosheng Zhang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Caoer Jia
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jinyu Zhang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Linlin Zhang
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
10
|
Jaroenthai N, Srikhao N, Kasemsiri P, Okhawilai M, Theerakulpisut S, Uyama H, Chindaprasirt P. Optimization of rapid self-healing and self-adhesive gluten/guar gum crosslinked gel for strain sensors and electronic devices. Int J Biol Macromol 2023; 253:127401. [PMID: 37827400 DOI: 10.1016/j.ijbiomac.2023.127401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
In this study, a smart strain sensor based on gluten/guar gum (GG) copolymer containing a combination of additives was developed. The mix proportions of strain sensors were designed using Taguchi method coupled with Grey relational analysis. L16 orthogonal array with three factors, viz. tannic acid (TA), glycerol and sodium chloride (NaCl) at four-levels each was optimized. The addition of TA substantially enhanced tensile strength, self-adhesion ability and conductivity. The self-adhesion ability could also be improved by adding NaCl in range of 0-5 wt%. The presence of glycerol in strain sensors could reduce the self-healing time which was found in the range of 28.75-150 s. In addition, the incorporation of glycerol into gel also improved stretchability of strain sensors. The best mix proportion of strain sensor was found to be 3.75 wt% TA, 30 vol% glycerol and 5 wt% NaCl. The best mixture of stain sensor showed the highest gauge factor (GF) of 0.61 % at a stretchability of 665 % and rapid self-healing at 70 s. This strain sensor could be applied to monitor human limb movements in a wide temperature range from -20 °C to 50 °C. Furthermore, the obtained gel was successfully used as electronic devices and self-powered sensors.
Collapse
Affiliation(s)
- Nattakan Jaroenthai
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natwat Srikhao
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pornnapa Kasemsiri
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somnuk Theerakulpisut
- Energy Management and Conservation Office, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Prinya Chindaprasirt
- Sustainable Infrastructure Research and Development Center, Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand; Academy of Science, Royal Society of Thailand, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
11
|
Li Y, Miao R, Yang Y, Han L, Han Q. A zinc-ion battery-type self-powered strain sensing system by using a high-performance ionic hydrogel. SOFT MATTER 2023; 19:8022-8032. [PMID: 37830392 DOI: 10.1039/d3sm00993a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Flexible strain sensors based on conductive hydrogels have profound implications for wearable electronics and health-monitoring systems. However, such sensors still need to integrate with energy providing devices to drive their functions. Herein, we develop a soaking-free polyacrylamide/carboxymethyl cellulose/tannic acid (PAAM/CMC/TA) hydrogel containing 2 M ZnSO4 + 0.1 M MnSO4 electrolyte for a novel zinc-ion battery-type self-powered strain sensing system. The synthesized hydrogel possesses desirable stretchability (tensile strain/stress of 622%/132 kPa), self-healing and self-adhesive properties, as well as good ionic conductivity (0.76 ± 0.04 S m-1). A mechanically durable Zn-MnO2 battery is developed using the PAAM/CMC/TA hydrogel and it can deliver a high specific capacity (223.0 mA h g-1) and maintain stable energy outputs under severe mechanical deformations. The electrochemical behavior of the battery can recover even after several self-healing cycles. Due to the excellent strain and pressure sensing properties of the PAAM/CMC/TA hydrogel, the battery combined with a fixed resistor served as a self-powered wearable sensing device, which could translate different human movements into distinguishable electrical signals without an external power supply. Our work provides guidance for the development of next-generation self-powered sensors.
Collapse
Affiliation(s)
- Yueqin Li
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Runtian Miao
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yong Yang
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Lin Han
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiangshan Han
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Zhao L, Ling Q, Fan X, Gu H. Self-Healable, Adhesive, Anti-Drying, Freezing-Tolerant, and Transparent Conductive Organohydrogel as Flexible Strain Sensor, Triboelectric Nanogenerator, and Skin Barrier. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40975-40990. [PMID: 37584619 DOI: 10.1021/acsami.3c08052] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Conductive hydrogels have attracted tremendous interest in the construction of flexible strain sensors and triboelectric nanogenerators (TENGs) owing to their good stretchability and adjustable properties. Nevertheless, how to simultaneously achieve high transparency, self-healing, adhesion, antibacterial, anti-freezing, anti-drying, and biocompatibility properties through a simple method remains a challenge. Herein, a transparent, freezing-tolerant, and multifunctional organohydrogel (PAOAM-PDO) as electrode for strain sensors and TENGs was constructed through a free radical polymerization in the 1,3-propanediol (PDO)/water binary solvent system, in which oxide sodium alginate, aminated gelatin, acrylic acid, and AlCl3 were used as raw materials. The obtained PAOAM-PDO exhibited good transparency (>90%), self-healing, adhesiveness, antibacterial property, good conductivity (1.13 S/m), and long-term environmental stability. The introduction of PDO endowed PAOAM-PDO with freezing resistance with a low freezing point of -60 °C, and PAOAM-PDO could serve as a protective skin barrier to prevent frostbite at low temperature. PAOAM-PDO could be assembled as strain sensors to monitor heterogeneous human movements with high strain sensitivity (gauge factor of 7.05, strain = 233%). Meanwhile, PAOAM-PDO could be further fabricated as a TENG with a "sandwich" structure in single electrode mode. Moreover, the resulting TENG achieved electrical outputs with simple hand tapping and served as a self-powered device to light light-emitting diodes. This work displays a feasible strategy to build environment-tolerant and multifunctional organohydrogels, which possess potential applications in the wearable electronics and self-powered devices.
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641100, China
| | - Qiangjun Ling
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Xin Fan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
Hua J, Su M, Sun X, Li J, Sun Y, Qiu H, Shi Y, Pan L. Hydrogel-Based Bioelectronics and Their Applications in Health Monitoring. BIOSENSORS 2023; 13:696. [PMID: 37504095 PMCID: PMC10377104 DOI: 10.3390/bios13070696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Flexible bioelectronics exhibit promising potential for health monitoring, owing to their soft and stretchable nature. However, the simultaneous improvement of mechanical properties, biocompatibility, and signal-to-noise ratio of these devices for health monitoring poses a significant challenge. Hydrogels, with their loose three-dimensional network structure that encapsulates massive amounts of water, are a potential solution. Through the incorporation of polymers or conductive fillers into the hydrogel and special preparation methods, hydrogels can achieve a unification of excellent properties such as mechanical properties, self-healing, adhesion, and biocompatibility, making them a hot material for health monitoring bioelectronics. Currently, hydrogel-based bioelectronics can be used to fabricate flexible bioelectronics for motion, bioelectric, and biomolecular acquisition for human health monitoring and further clinical applications. This review focuses on materials, devices, and applications for hydrogel-based bioelectronics. The main material properties and research advances of hydrogels for health monitoring bioelectronics are summarized firstly. Then, we provide a focused discussion on hydrogel-based bioelectronics for health monitoring, which are classified as skin-attachable, implantable, or semi-implantable depending on the depth of penetration and the location of the device. Finally, future challenges and opportunities of hydrogel-based bioelectronics for health monitoring are envisioned.
Collapse
Affiliation(s)
- Jiangbo Hua
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Mengrui Su
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yuqiong Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Hao Qiu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
14
|
Zhang T, Guo Y, Chen Y, Peng X, Toufouki S, Yao S. A multifunctional and sustainable poly(ionic liquid)-quaternized chitosan hydrogel with thermal-triggered reversible adhesion. Int J Biol Macromol 2023; 242:125198. [PMID: 37285877 DOI: 10.1016/j.ijbiomac.2023.125198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
A quaternized chitosan (QCS)@poly(ionic liquid) (PIL) hydrogel adhesive was prepared by in-situ ultraviolet (UV)-induced copolymerization of 1-vinyl-3-butyl imidazolium bromide ([BVIm][Br]) and methacryloyloxyethyl trimethylammonium chloride (DMC) in QCS aqueous solution without using any crosslinkers, which was stably crosslinked by reversible hydrogen bonding together with ion association and exhibited excellent adhesion, plasticity, conductivity and recyclability properties. Moreover, its thermal/pH-responsive behaviors and intermolecular interaction mechanism of thermal-triggered reversible adhesion were discovered, meanwhile good biocompatibility, antibacterial properties, repeated stickiness and degradability were also proved. The results showed that the newly developed hydrogel could make various tissues, organic, inorganic or metal materials adhered tightly within 1 min; after 10 binding-peeling cycles, the adhesive strength to glass, plastic, aluminum and porcine skin still remained beyond 96 %, 98 %, 92 % and 71 % of the original, respectively. The adhesion mechanism involves ion dipole interaction, electrostatic interaction, hydrophobic interaction, coordination, cation-π interaction, H-bonding and van der Waals force. For above merits, the new tricomponent hydrogel is expected to be applied in biomedical field to achieve adjustable adhesion and on-demand peeling.
Collapse
Affiliation(s)
- Tenghe Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yingying Guo
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610207, China
| | - Sara Toufouki
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
15
|
Kang B, Gao M, Zhao R, Zhao Z, Song S. Multi-environmentally stable and underwater adhesive DNA ionogels enabling flexible strain sensor. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
16
|
Rong L, Zhao W, Fan Y, Zhou Z, Zhan M, He X, Yuan W, Qian C. Environmentally Stable, Stretchable, Adhesive, and Conductive Organohydrogels with Multiple Dynamic Interactions as High-Performance Strain and Temperature Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55075-55087. [PMID: 36455289 DOI: 10.1021/acsami.2c16919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nowadays, with the rapid development of artificial intelligence, conductive hydrogel-based sensors play an increasingly vital role in health monitoring and temperature sensing. However, the perfect integration of the environmental stability and applied performance of the hydrogel has always been a challenging and significant problem. Herein, we report an environmentally tolerant, stretchable, adhesive, self-healing conductive gel through multiple dynamic interactions in the water/glycerol/ionic liquids medium, which can be used as a high-performance strain and temperature sensor. The random copolymer poly(acrylic acid-co-acetoacetoxyethyl methacrylate) interacts with the branched poly(ethylene imine) (PEI) and Zr4+ ions via the dynamic covalent enamine bonds, coordinations, and electrostatic interactions to improve stretchable (1300%), compressible, fatigue-resistant (1000 cycles at 50% strain), and self-healing performance (95%, 24 h). The combination of water/glycerol/ionic liquids imparts the resulting gel with excellent electrical conductivity, anti-drying, and anti-freezing performance. By means of the above excellent performance, the gel could be used as the flexible strain or pressure sensor with high sensitivity and stability for the detection of the movement, expression, handwriting, pronouncing, and electrocardiogram (ECG) signals in various models. Meanwhile, the resulting gel can be assembled as the temperature sensor to trace the change of temperature accurately and steadily, which has a wide operating window (0 to 100 °C), an ultralow detection limit (0.2 °C), and high sensitivity (2.1% °C-1). It is believed that the strategy for the multifunction and high-performance gel will blaze a new trail for the smart device in health management, temperature detection, and information transmission under various environmental conditions.
Collapse
Affiliation(s)
- Liduo Rong
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai519000, P. R. China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai519000, P. R. China
| | - Yu Fan
- School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China
| | - Zixuan Zhou
- School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai519000, P. R. China
| | - Xu He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai519000, P. R. China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Tongji University, Shanghai201804, P. R. China
| | - Chunhua Qian
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai200072, P. R. China
| |
Collapse
|
17
|
Flexible self-powered integrated sensing system based on a rechargeable zinc-ion battery by using a multifunctional polyacrylamide/carboxymethyl chitosan/LiCl ionic hydrogel. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
He Z, Zhou Z, Yuan W. Highly Adhesive, Stretchable, and Antifreezing Hydrogel with Excellent Mechanical Properties for Sensitive Motion Sensors and Temperature-/Humidity-Driven Actuators. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38205-38215. [PMID: 35952384 DOI: 10.1021/acsami.2c10292] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conductive hydrogels as flexible wearable devices have attracted considerable attention due to their mechanical flexibility and intelligent sensing. How to endow more and better performance, such as high self-adhesion, stretchability, and wide application temperature range for traditional hydrogels and flexible sensors is a challenge. Herein, a stretchable, self-adhesive, and antifreezing conductive hydrogel with multiple networks and excellent mechanical properties was prepared by a two-step method for its application in sensitive motion sensors and temperature-/humidity-driven actuators. First, quaternary chitosan (QCS) was introduced into the network of an acrylamide (AM) and 1-vinyl imidazole (VI) copolymer initiated by UV-photoinitiated radical polymerization. Then, the double-network hydrogel was immersed in a FeCl3 solution to fabricate the P(AAm-co-VI)/QCS-Fe3+ ionic hydrogel with multiple physical networks. The properties of the hydrogel were controllable and adjustable. The toughness of the ionic hydrogel could reach up to 654.4 kJ/m3, the fracture strength could reach 253.1 kPa, and the compressive strength reached 8.4 MPa at an 80% compression strain. The multiple physical networks improved the mechanical properties and the quick resilience of the hydrogel. A large amount of FeCl3 in the network greatly enhanced the ionic conductivity. Meanwhile, hydrogen bonds with water molecules inhibit the formation of ice crystals between zero water molecules and enhance the freezing resistance of P(Aam-co-VI)/QCS hydrogels. The active group on the QCS chain provided adhesiveness to various substrates for hydrogels. The P(AAm-co-VI)/QCS-Fe3+ hydrogel-based sensor showed high sensitivity, which can detect human movement and pulse, with a gauge factor of 2.37. Finally, due to the different dehydration rates of the P(AAm-co-VI)/QCS-Fe3+ and P(AAm-co-VI)/QCS hydrogel, a double-layer temperature/humidity-driven actuator was fabricated, expanding the application of conductive hydrogels.
Collapse
Affiliation(s)
- Zhirui He
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Zixuan Zhou
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| |
Collapse
|
19
|
Wang L, Liu S, Cheng J, Peng Y, Meng F, Wu Z, Chen H. Poly( N, N-dimethyl)acrylamide-based ion-conductive gel with transparency, self-adhesion and rapid self-healing properties for human motion detection. SOFT MATTER 2022; 18:6115-6123. [PMID: 35943040 DOI: 10.1039/d2sm00786j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible strain sensors have been extensively studied for their potential value in monitoring human activity and health. However, it is still challenging to develop multifunctional flexible strain sensors with simultaneously high transparency, strong self-adhesion, fast self-healing and excellent tensile properties. In this study, we used N,N-dimethylacrylamide (DMA) in the imidazolium-based ionic liquid 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide ([BMIM][Tf2N]) for "one-step" UV irradiation. A poly(N,N-dimethyl)acrylamide (PDMA) ion-conductive gel was prepared by site polymerization. Based on the good compatibility between PDMA and ionic liquid, the prepared ion-conductive gel has good transparency (∼90%), excellent stretchability (1080%), strong self-adhesion (67.57 kPa), fast self-healing (2 s at room temperature) and great antibacterial activity (∼99% bacterial killing efficiency). Moreover, the strain sensor based on the PDMA ion-conductive gel has good electromechanical performance and can detect different human motions. Based on the simple and easy-to-operate preparation method and the endowed multifunctionality of the PDMA ion-conductive gel, it has broad application prospects in the field of flexible electronic devices.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Shengjie Liu
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Jingjing Cheng
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Yao Peng
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Fangfei Meng
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Zhaoqiang Wu
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hong Chen
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
20
|
Transparent, highly stretchable, adhesive, and sensitive ionic conductive hydrogel strain sensor for human motion monitoring. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Pang Q, Hu H, Zhang H, Qiao B, Ma L. Temperature-Responsive Ionic Conductive Hydrogel for Strain and Temperature Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26536-26547. [PMID: 35657037 DOI: 10.1021/acsami.2c06952] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible wearable devices have achieved remarkable applications in health monitoring because of the advantages of multisignal collecting and real-time wireless transmission of information. However, the integration of bulky sensing elements and rigid metal circuit components in traditional wearable devices may lead to a mechanical and signal-conducting mismatch between wearable devices and biological tissues, thus restricting their wide applications in the human body. The excellent mechanical properties, conductivity, and high tissue resemblance of conductive hydrogel contribute to its application in flexible electronic sensors to monitor human health. In this work, a dual-network, temperature-responsive ionic conductive hydrogel with excellent stretchability, fast temperature responsiveness, and good conductivity was developed by introducing a polyvinylpyrrolidone (PVP)/ tannic acid (TA)/ Fe3+ cross-linked network into the N,N-methylene diacrylamide (MBAA) cross-linked poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAAm-co-AM)) network. Furthermore, the introduction of the PVP/TA/Fe3+ cross-linked network endowed the hydrogel with excellent stretchability and conductivity. By adjusting the molar ratio of TA and Fe3+ to 3:5, a hydrogel with a maximal stretching ratio of 720% and sensitive strain response (GF = 3.61) was achieved, showing a promising application in wearable strain sensors to monitor both large and fine human motions. Moreover, by introducing PNIPAAm with a lower critical solution temperature (LCST), the hydrogel may be used to monitor the environmental temperature through the temperature-conductivity responsiveness, which can be applied as a wearable temperature sensor to detect fever or tissue hyperthermia in the human body.
Collapse
Affiliation(s)
- Qian Pang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200437, China
| | - Hongtao Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haiqi Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bianbian Qiao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
22
|
Li J, Luo S, Li F, Dong S. Supramolecular Polymeric Pressure-Sensitive Adhesive That Can Be Directly Operated at Low Temperatures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27476-27483. [PMID: 35653162 DOI: 10.1021/acsami.2c05951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low-temperature adhesion is ubiquitous in daily life and industry. However, most supramolecular adhesives are thermoplastic materials that require heating during the adhesion. Herein, a supramolecular approach is used to construct unique pressure-sensitive adhesives (PSAs) that can be directly operated at low temperatures (-60 °C). Supramolecular polymerization between phytic acid (PA) and water (H) endows poly(PA-H)s with excellent mechanical properties and low temperature adhesion capacity. Poly(PA-H)s can easily be processed into PSA tapes, pastes, and particles. Poly(PA-H)s were directly adhered to various surfaces by pressing at low temperatures (0 to -60 °C). No heating or high-temperature-induced solid-liquid transition was required for the low-temperature adhesion of poly(PA-H)s. With the help of structural water units in supramolecular polymers, poly(PA-H)s showed strong, stable, and organic solvent resistant adhesion performances at low temperatures, with adhesion strength of up to 3.61 MPa at -60 °C.
Collapse
Affiliation(s)
- Jialing Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Sha Luo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
23
|
Tie J, Mao Z, Zhang L, Zhong Y, Sui X, Xu H. Highly transparent, self-healing and adhesive wearable ionogel as strain and temperature sensor. Polym Chem 2022. [DOI: 10.1039/d2py00594h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stable ionogel with good self-healing capability and adhesion, excellent stretchability (2017%), high durability (1000 cycles) and high transparency (92%) is fabricated and assembled into a strain and temperature sensor with high sensitivity.
Collapse
Affiliation(s)
- Jianfei Tie
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian City, Shandong Province, 271000, People's Republic of China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|