1
|
Woo HK, Nam Y, Park HG, Lee H. Bridging laboratory innovation to translational research and commercialization of extracellular vesicle isolation and detection. Biosens Bioelectron 2025; 282:117475. [PMID: 40300344 DOI: 10.1016/j.bios.2025.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/04/2025] [Accepted: 04/13/2025] [Indexed: 05/01/2025]
Abstract
Extracellular vesicles (EVs) have emerged as promising biomarkers for various diseases. Encapsulating biomolecules reflective of their parental cells, EVs are readily accessible in bodily fluids. The prospect for minimally invasive, repeatable molecular testing has stimulated significant research; however, challenges persist in isolating EVs from complex biological matrices and characterizing their limited molecular cargo. Technical advances have been pursued to address these challenges, producing innovative EV-specific platforms. This review highlights recent technological developments, focusing on EV isolation and molecular detection methodologies. Furthermore, it explores the translation of these laboratory innovations to clinical applications through the analysis of patient samples, providing insights into the potential diagnostic and prognostic utility of EV-based technologies.
Collapse
Affiliation(s)
- Hyun-Kyung Woo
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yoonho Nam
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Meza-Morales W, Ayus-Martinez S, Jimenez-Osorio J, Buendia-Otero M, López L, Suleiman D, Suarez E, Freytes DO, Cunci L, Mora C. Functionalized screen-printed electrodes for non-invasive detection of vascular-endothelial cadherin in extracellular vesicles. RSC Adv 2025; 15:12609-12621. [PMID: 40264865 PMCID: PMC12012609 DOI: 10.1039/d4ra08926j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
In this study, we developed a biosensor using a gold screen-printed electrode (Au-SPE) functionalized with mercaptoundecanoic acid (MUA) and an antibody for detecting the vascular-endothelial cadherin (CD144) as a endothelial biomarker protein on extracellular vesicles (EVs) isolated from saliva. The MUA functionalization provides a stable platform for immobilizing the CD144 antibody, ensuring the detection of the target protein. This biosensor combines Au-SPE technology with an immunoassay, offering a rapid, sensitive, and non-invasive method for detection of CD144 carried by EVs. Characterization of saliva-derived EVs using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) confirmed their morphology and size, which fell within the expected range of 80-180 nm. NTA indicated a lower concentration of particles in saliva-EVs than in serum-EVs (controls), highlighting the need for sensitive detection of EV cargos in this type of EV. Immunodetection confirmed the presence of CD144 in both saliva and serum-derived EVs, with higher concentrations in serum. Functionalization of Au-SPEs with MUA and CD144 antibodies was confirmed by significant resistance changes, and atomic force microscopy (AFM) was used to verify the preservation of EV morphology and their capturing post-immune adsorption. A calibration curve demonstrated the high sensitivity of the biosensor prototype for detecting CD144-positive EVs, with a limit of detection (LOD) of 0.111 ng mL-1 and a limit of quantification (LOQ) of 0.37 ng mL-1, requiring only 3 μL of EV-sample. This biosensor shows potential as a novel method for detecting and studying endothelial biomarkers associated with cardiovascular disease in EVs isolated from saliva, a capability not currently available with existing tools. Furthermore, it provides a key platform for expanding research to other biomarkers and diseases by monitoring protein cargos in the EVs, enhancing its utility across diverse clinical applications.
Collapse
Affiliation(s)
- William Meza-Morales
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| | - Sahimy Ayus-Martinez
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| | - Jesus Jimenez-Osorio
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| | - Maria Buendia-Otero
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| | - Luis López
- Department of Chemistry, University of Puerto Rico-Rio Piedras 601 Av. Universidad San Juan Puerto Rico USA
| | - David Suleiman
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| | - Edu Suarez
- Department of Biology, University of Puerto Rico-Ponce Av. Santiago de los Caballeros Ponce Puerto Rico USA
| | - Donald O Freytes
- Lampe Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill/North Carolina State University 4130 Engineering Building III, Campus Box 7115 Raleigh NC 27695 USA
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico-Rio Piedras 601 Av. Universidad San Juan Puerto Rico USA
| | - Camilo Mora
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez Route 108 Mayaguez Puerto Rico USA
| |
Collapse
|
3
|
Ayus-Martinez S, Meza-Morales W, Jimenez-Osorio J, Buendia-Otero M, López L, Cunci L, Freytes DO, Mora C. From isolation to detection, advancing insights into endothelial matrix-bound vesicles. EXTRACELLULAR VESICLE 2024; 4:100060. [PMID: 39866746 PMCID: PMC11759483 DOI: 10.1016/j.vesic.2024.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Matrix-bound vesicles (MBVs), an integral part of the extracellular matrix (ECM), are emerging as pivotal factors in ECM-driven molecular signaling. This study is the first to report the isolation of MBVs from porcine arterial endothelial cell basement membranes (A-MBVs) and thyroid cartilage (C-MBVs), the latter serving as a negative control due to its minimal vascular characteristics. Using Transmission Electron Microscopy (TEM), Nano-Tracking Analysis (NTA), Electrochemical Impedance Spectroscopy (EIS), and Atomic Force Microscopy (AFM), we orthogonally characterized the isolated MBVs. We detected the presence and preservation of vascular endothelial cadherin (CD144) in A-MBVs, its low to non-detetcted in C-MBVs, in which SOX9, a chondrocyte marker, was detected. Moreover, we developed a prototype of an immuno-functionalized screen-printed electrode designed for the immunoadsorption of CD144+ MBVs. This device facilitated the electrochemical detection of the targeted vesicles and allowed for their subsequent topological characterization using AFM, which verified the integrity and morphology of CD144+ MBVs post-immunoadsorption. These advancements enhance our comprehension of MBVs as conveyors of tissue-specific signals and pioneer new avenues for harnessing their cargo in biomedical applications. This research sets a significant precedent for future studies on the application of MBVs in regenerative medicine and ECM signaling.
Collapse
Affiliation(s)
- Sahimy Ayus-Martinez
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Route 108, Mayaguez, Puerto Rico, USA
| | - William Meza-Morales
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Route 108, Mayaguez, Puerto Rico, USA
| | - Jesus Jimenez-Osorio
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Route 108, Mayaguez, Puerto Rico, USA
| | - Maria Buendia-Otero
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Route 108, Mayaguez, Puerto Rico, USA
| | - Luis López
- Department of Chemistry, University of Puerto Rico-Rio Piedras, 601 Av. Universidad, San Juan, PR, USA
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico-Rio Piedras, 601 Av. Universidad, San Juan, PR, USA
| | - Donald O. Freytes
- The Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina at Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC, 27695, USA
| | - Camilo Mora
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Route 108, Mayaguez, Puerto Rico, USA
| |
Collapse
|
4
|
Pena-Zacarias J, Zahid MI, Nurunnabi M. Electrochemical Nanosensor-Based Emerging Point-Of-Care Tools: Progress and Prospects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2002. [PMID: 39540257 DOI: 10.1002/wnan.2002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/21/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024]
Abstract
Early detection of disease remains a crucial challenge in medicine. Delayed diagnosis often leads to limited treatment options, increased disease progression, and unfortunately, even death in some cases. To address this, the need for rapid, cost-effective, and noninvasive diagnostic tools is paramount. In recent years, electrochemical nanosensor-based point-of-care diagnostic tools have emerged as promising tools for various fields, with significant interest in their biological and chemical applications. These tiny sensors, utilizing nanoparticles and chemical agents, can detect and monitor physical components like disease biomarkers at the nanoscale, offering a unique advantage rarely found in other diagnostic methods. This unprecedented sensitivity has made them highly sought-after tools for biological applications, particularly in disease diagnosis. This review focuses specifically on electrochemical nanosensors and their potential as diagnostic tools in medicine. We will delve into their properties, applications, current advancements, and existing limitations.
Collapse
Affiliation(s)
- Jaqueline Pena-Zacarias
- Department of Biological Sciences, College of Science, The University of Texas at El Paso, El Paso, Texas, USA
| | - Md Ikhtiar Zahid
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| | - Md Nurunnabi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, USA
| |
Collapse
|
5
|
Wei X, Xiong H, Zhou Y, Chen X, Yang W. Tracking epithelial-mesenchymal transition in breast cancer cells based on a multiplex electrochemical immunosensor. Biosens Bioelectron 2024; 258:116372. [PMID: 38735081 DOI: 10.1016/j.bios.2024.116372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
Epithelial-mesenchymal transition (EMT) promotes tumor cell infiltration and metastasis. Tracking the progression of EMT could potentially indicate early cancer metastasis. A key characteristic of EMT is the dynamic alteration in the molecular levels of E-cadherin and N-cadherin. Traditional assays have limited sensitivity and multiplexing capabilities, relying heavily on cell lysis. Here, we developed a multiplex electrochemical biosensor to concurrently track the upregulation of N-cadherin expression and reduction of E-cadherin in breast cancer cells undergoing EMT. Small-sized gold nanoparticles (Au NPs) tagged with redox probes (thionin or amino ferrocene) and bound to two types of antibodies were used as distinguishable signal tags. These tags specifically recognized E-cadherin and N-cadherin proteins on the tumor cell surface without cross-reactivity. The diphenylalanine dipeptide (FF)/chitosan (CS)/Au NPs (FF-CS@Au) composites with high surface area and good biocompatibility were used as the sensing platforms for efficiently fixing cells and recording the dynamic changes in electrochemical signals of surface proteins. The electrochemical immunosensor allowed for simultaneous monitoring of E- and N-cadherins on breast cancer cell surfaces in a single run, enabling tracking of the EMT dynamic process for up to 60 h. Furthermore, the electrochemical detection results are consistent with Western blot analysis, confirming the reliability of the methodology. This present work provides an effective, rapid, and low-cost approach for tracking the EMT process, as well as valuable insights into early tumor metastasis.
Collapse
Affiliation(s)
- Xue Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hanzhi Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yunfan Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Wensheng Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| |
Collapse
|
6
|
Ma N, Zhang J, Kong J, Zhang X. Fluorescence Sensing of Eclampsia Biomarkers via the Immunosorbent Atom Transfer Radical Polymerization Assay. Anal Chem 2024; 96:8450-8457. [PMID: 38728011 DOI: 10.1021/acs.analchem.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Accurate and quantitative detection of pre-eclampsia markers is crucial in reducing pregnancy mortality rates. This study introduces a novel approach utilizing a fluorescent biosensor by the immunosorbent atom transfer radical polymerization (immuno-ATRP) assay to detect the pre-eclampsia protein marker CD81. The critical step used in this sensor is the novel signal amplification strategy of fluorescein polymerization mediated by ferritin-enhanced controlled radical polymerization, which combines with a traditional enzyme-linked immunosorbent assay (ELISA) to further reduce the detection limit of the CD81 protein concentration. The fluorescence intensity was linear versus logarithmic CD81 protein concentration from 0.1 to 10,000 pg mL-1, and the detection limit was 0.067 pg mL-1. Surprisingly, in 30% normal human serum (NHS), the sensor can also detect target protein over 0.1-10,000 pg mL-1, with 0.083 pg mL-1 for the detection limit. Moreover, the proposed biosensor is designed to be cost-effective, making it accessible, particularly in resource-limited settings where expensive detection techniques may not be available. The affordability of this method enables widespread screening and monitoring of preeclampsia, ultimately benefiting many pregnant women by improving their healthcare outcomes. In short, developing of a low-cost and susceptible direct detection method for preeclampsia protein markers, such as CD81, through the use of the immuno-ATRP assay, has significant implications for reducing pregnancy mortality. This method holds promise for early detection, precise treatment, and improved management of preeclampsia, thereby contributing to better maternal and fetal health.
Collapse
Affiliation(s)
- Nan Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
| | - Jian Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211200, PR China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
7
|
Costa JNY, Pimentel GJC, Poker JA, Merces L, Paschoalino WJ, Vieira LCS, Castro ACH, Alves WA, Ayres LB, Kubota LT, Santhiago M, Garcia CD, Piazzetta MHO, Gobbi AL, Shimizu FM, Lima RS. Single-Response Duplexing of Electrochemical Label-Free Biosensor from the Same Tag. Adv Healthc Mater 2024; 13:e2303509. [PMID: 38245830 PMCID: PMC11468374 DOI: 10.1002/adhm.202303509] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Multiplexing is a valuable strategy to boost throughput and improve clinical accuracy. Exploiting the vertical, meshed design of reproducible and low-cost ultra-dense electrochemical chips, the unprecedented single-response multiplexing of typical label-free biosensors is reported. Using a cheap, handheld one-channel workstation and a single redox probe, that is, ferro/ferricyanide, the recognition events taking place on two spatially resolved locations of the same working electrode can be tracked along a single voltammetry scan by collecting the electrochemical signatures of the probe in relation to different quasi-reference electrodes, Au (0 V) and Ag/AgCl ink (+0.2 V). This spatial isolation prevents crosstalk between the redox tags and interferences over functionalization and binding steps, representing an advantage over the existing non-spatially resolved single-response multiplex strategies. As proof of concept, peptide-tethered immunosensors are demonstrated to provide the duplex detection of COVID-19 antibodies, thereby doubling the throughput while achieving 100% accuracy in serum samples. The approach is envisioned to enable broad applications in high-throughput and multi-analyte platforms, as it can be tailored to other biosensing devices and formats.
Collapse
Affiliation(s)
- Juliana N. Y. Costa
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Gabriel J. C. Pimentel
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
| | - Júlia A. Poker
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
| | - Leandro Merces
- Research Center for MaterialsArchitectures and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Waldemir J. Paschoalino
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Luis C. S. Vieira
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Ana C. H. Castro
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Wendel A. Alves
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Lucas B. Ayres
- Department of ChemistryClemson UniversityClemsonSC29634USA
| | - Lauro T. Kubota
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | | | - Maria H. O. Piazzetta
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Angelo L. Gobbi
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Flávio M. Shimizu
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Renato S. Lima
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
- Center for Natural and Human SciencesFederal University of ABCSanto AndréSão Paulo09210‐580Brazil
- Institute of ChemistryUniversity of CampinasCampinasSão Paulo13083‐970Brazil
- Department of ChemistryClemson UniversityClemsonSC29634USA
- São Carlos Institute of ChemistryUniversity of São PauloSão CarlosSão Paulo13565‐590Brazil
| |
Collapse
|
8
|
Lee S, Verkhoturov DS, Eller MJ, Verkhoturov SV, Shaw MA, Gwon K, Kim Y, Lucien F, Malhi H, Revzin A, Schweikert EA. Nanoprojectile Secondary Ion Mass Spectrometry Enables Multiplexed Analysis of Individual Hepatic Extracellular Vesicles. ACS NANO 2023; 17:23584-23594. [PMID: 38033295 PMCID: PMC10985841 DOI: 10.1021/acsnano.3c06604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Extracellular vesicles (EVs) are nanoscale lipid bilayer particles secreted by cells. EVs may carry markers of the tissue of origin and its disease state, which makes them incredibly promising for disease diagnosis and surveillance. While the armamentarium of EV analysis technologies is rapidly expanding, there remains a strong need for multiparametric analysis with single EV resolution. Nanoprojectile (NP) secondary ion mass spectrometry (NP-SIMS) relies on bombarding a substrate of interest with individual gold NPs resolved in time and space. Each projectile creates an impact crater of 10-20 nm in diameter while molecules emitted from each impact are mass analyzed and recorded as individual mass spectra. We demonstrate the utility of NP-SIMS for statistical analysis of single EVs derived from normal liver cells (hepatocytes) and liver cancer cells. EVs were captured on antibody (Ab)-functionalized gold substrate and then labeled with Abs carrying lanthanide (Ln) MS tags (Ab@Ln). These tags targeted four markers selected for identifying all EVs, and specific to hepatocytes or liver cancer. NP-SIMS was used to detect Ab@Ln-tags colocalized on the same EV and to construct scatter plots of surface marker expression for thousands of EVs with the capability of categorizing individual EVs. Additionally, NP-SIMS revealed information about the chemical nanoenvironment where targeted moieties colocalized. Our approach allowed analysis of population heterogeneity with single EV resolution and distinguishing between hepatocyte and liver cancer EVs based on surface marker expression. NP-SIMS holds considerable promise for multiplexed analysis of single EVs and may become a valuable tool for identifying and validating EV biomarkers of cancer and other diseases.
Collapse
Affiliation(s)
- Seonhwa Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Michael J. Eller
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330, USA
| | | | - Michael A. Shaw
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330, USA
| | - Kihak Gwon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yohan Kim
- Departments of Urology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fabrice Lucien
- Departments of Urology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Emile A. Schweikert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
9
|
Chang K, Fang Y, He P, Zhu C, Liu X, Zheng D, Chen D, Liu C. Employing the Anchor DSPE-PEG as a Redox Probe for Ratiometric Electrochemical Detection of Surface Proteins on Extracellular Vesicles with Aptamers. Anal Chem 2023; 95:16194-16200. [PMID: 37889159 DOI: 10.1021/acs.analchem.3c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Quantitative analysis of surface proteins on extracellular vesicles (EVs) has been considered to be a crucial approach for reflecting the status of diseases. Due to the diverse composition of surface proteins on EVs and the interference from nonvesicular proteins, accurately detecting the expression of surface proteins on EVs remains a challenging task. While membrane affinity molecules have been widely employed as EVs capture probes to address this issue, their inherent biochemical properties have not been effectively harnessed. In this paper, we found that the electrochemical redox activity of the DSPE-PEG molecule was diminished upon its insertion into the membrane of EVs. This observation establishes the DSPE-PEG molecule modified on the Au electrode surface as a capture and a redox probe for the electrochemical detection of EVs. By utilizing methylene blue-labeled aptamers, the targeted surface proteins of EVs can be detected by recording the ratio of the oxidation peak current of methylene blue and DSPE-PEG. Without complicated signal amplification, the detection limit for EVs is calculated to be 8.11 × 102 particles/mL. Using this platform, we directly analyzed the expression of CD63 and HER2 proteins on the surface of EVs in human clinical plasma samples, demonstrating its significant potential in distinguishing breast cancer patients from healthy individuals.
Collapse
Affiliation(s)
- Kaili Chang
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Yi Fang
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Ping He
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Chunnan Zhu
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Xiaojun Liu
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Dongyun Zheng
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Chao Liu
- The Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis and Treatment, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
10
|
Zhang Y, Zhao L, Li Y, Wan S, Yuan Z, Zu G, Peng F, Ding X. Advanced extracellular vesicle bioinformatic nanomaterials: from enrichment, decoding to clinical diagnostics. J Nanobiotechnology 2023; 21:366. [PMID: 37798669 PMCID: PMC10557264 DOI: 10.1186/s12951-023-02127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane nanoarchitectures generated by cells that carry a variety of biomolecules, including DNA, RNA, proteins and metabolites. These characteristics make them attractive as circulating bioinformatic nanocabinets for liquid biopsy. Recent advances on EV biology and biogenesis demonstrate that EVs serve as highly important cellular surrogates involved in a wide range of diseases, opening up new frontiers for modern diagnostics. However, inefficient methods for EV enrichment, as well as low sensitivity of EV bioinformatic decoding technologies, hinder the use of EV nanocabinet for clinical diagnosis. To overcome these challenges, new EV nanotechnology is being actively developed to promote the clinical translation of EV diagnostics. This article aims to present the emerging enrichment strategies and bioinformatic decoding platforms for EV analysis, and their applications as bioinformatic nanomaterials in clinical settings.
Collapse
Affiliation(s)
- Yawei Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Liang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yaocheng Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Shuangshuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiyao Yuan
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fei Peng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
11
|
Lee S, Verkhoturov DS, Eller MJ, Verkhoturov SV, Shaw MA, Gwon K, Kim Y, Lucien F, Malhi H, Revzin A, Schweikert EA. Nanoprojectile Secondary Ion Mass Spectrometry Enables Multiplexed Analysis of Individual Hepatic Extracellular Vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554053. [PMID: 37662200 PMCID: PMC10473594 DOI: 10.1101/2023.08.21.554053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Extracellular vesicles (EVs) are nanoscale lipid bilayer particles secreted by cells. EVs may carry markers of the tissue of origin and its disease state which makes them incredibly promising for disease diagnosis and surveillance. While the armamentarium of EV analysis technologies is rapidly expanding, there remains a strong need for multiparametric analysis with single EV resolution. Nanoprojectile (NP) secondary ion mass spectrometry (NP-SIMS) relies on bombarding a substrate of interest with individual gold NPs resolved in time and space. Each projectile creates an impact crater of 10-20 nm in diameter while molecules emitted from each impact are mass analyzed and recorded as individual mass spectra. We demonstrate the utility of NP-SIMS for analysis of single EVs derived from normal liver cells (hepatocytes) and liver cancer cells. EVs were captured on antibody (Ab)-functionalized gold substrate then labeled with Abs carrying lanthanide (Ln) MS tags (Ab@Ln). These tags targeted four markers selected for identifying all EVs, and specific to hepatocytes or liver cancer. NP-SIMS was used to detect Ab@Ln-tags co-localized on the same EV and to construct scatter plots of surface marker expression for thousands of EVs with the capability of categorizing individual EVs. Additionally, NP-SIMS revealed information about the chemical nano-environment where targeted moieties co-localized. Our approach allowed analysis of population heterogeneity with single EV resolution and distinguishing between hepatocyte and liver cancer EVs based on surface marker expression. NP-SIMS holds considerable promise for multiplexed analysis of single EVs and may become a valuable tool for identifying and validating EV biomarkers of cancer and other diseases.
Collapse
|
12
|
Sharafeldin M, Rusling JF. Multiplexed electrochemical assays for clinical applications. CURRENT OPINION IN ELECTROCHEMISTRY 2023; 39:101256. [PMID: 37006828 PMCID: PMC10062004 DOI: 10.1016/j.coelec.2023.101256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Rapid, accurate diagnoses are central to future efficient healthcare to identify diseases at early stages, avoid unnecessary treatment, and improve outcomes. Electrochemical techniques have been applied in many ways to support clinical applications by enabling the analysis of relevant disease biomarkers in user-friendly, sensitive, low-cost assays. Electrochemistry offers a launchpad for multiplexed biomarker assays that offer more accurate and precise diagnostics compared to single biomarker assays. In this short review, we underpin the importance of multiplexed analyses and provide a universal overview of current electrochemical assay strategies for multiple biomarkers. We highlight relevant examples of electrochemical methods that successfully quantify important disease biomarkers. Finally, we offer a future outlook on possible strategies that can be employed to increase throughput, sensitivity, and specificity of multiplexed electrochemical assays.
Collapse
Affiliation(s)
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland. H91 TK33
| |
Collapse
|
13
|
Sahu SS, Gevari MT, Nagy Á, Gestin M, Hååg P, Lewensohn R, Viktorsson K, Karlström AE, Dev A. Multi-marker profiling of extracellular vesicles using streaming current and sequential electrostatic labeling. Biosens Bioelectron 2023; 227:115142. [PMID: 36805937 DOI: 10.1016/j.bios.2023.115142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
High heterogeneity in the membrane protein expression of small extracellular vesicles (sEVs) means that bulk methods relying on antibody-based capture for expression analysis have a drawback that each type of antibody may capture a different sub-population. An improved approach is to capture a representative sEV population, without any bias, and then perform a multiplexed protein expression analysis on this population. However, such a possibility has been largely limited to fluorescence-based methods. Here, we present a novel electrostatic labelling strategy and a microchip-based all-electric method for membrane protein analysis of sEVs. The method allows us to profile multiple surface proteins on the captured sEVs using alternating charge labels. It also permits the comparison of expression levels in different sEV-subtypes. The proof of concept was tested by capturing sEVs both non-specifically (unbiased) as well as via anti-CD9 capture probes (biased), and then profiling the expression levels of various surface proteins using the charge labelled antibodies. The method is the first of its kind, demonstrating an all-electrical and microchip based method that allows for unbiased analysis of sEV membrane protein expression, comparison of expression levels in different sEV subsets, and fractional estimation of different sEV sub-populations. These results were also validated in parallel using a single-sEV fluorescence technique.
Collapse
Affiliation(s)
- Siddharth S Sahu
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden.
| | - Moein T Gevari
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, 75121, Uppsala, Sweden
| | - Ábel Nagy
- Department of Protein Science, School of Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Maxime Gestin
- Department of Protein Science, School of Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, 17164, Stockholm, Sweden; Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, S-171 64, Solna, Sweden
| | - Kristina Viktorsson
- Department of Oncology-Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Amelie E Karlström
- Department of Protein Science, School of Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Apurba Dev
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden; Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, 75121, Uppsala, Sweden.
| |
Collapse
|
14
|
Taylor ML, Giacalone AG, Amrhein KD, Wilson RE, Wang Y, Huang X. Nanomaterials for Molecular Detection and Analysis of Extracellular Vesicles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:524. [PMID: 36770486 PMCID: PMC9920192 DOI: 10.3390/nano13030524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a novel resource of biomarkers for cancer and certain other diseases. Probing EVs in body fluids has become of major interest in the past decade in the development of a new-generation liquid biopsy for cancer diagnosis and monitoring. However, sensitive and specific molecular detection and analysis are challenging, due to the small size of EVs, low amount of antigens on individual EVs, and the complex biofluid matrix. Nanomaterials have been widely used in the technological development of protein and nucleic acid-based EV detection and analysis, owing to the unique structure and functional properties of materials at the nanometer scale. In this review, we summarize various nanomaterial-based analytical technologies for molecular EV detection and analysis. We discuss these technologies based on the major types of nanomaterials, including plasmonic, fluorescent, magnetic, organic, carbon-based, and certain other nanostructures. For each type of nanomaterial, functional properties are briefly described, followed by the applications of the nanomaterials for EV biomarker detection, profiling, and analysis in terms of detection mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
15
|
Lee S, Gonzalez-Suarez AM, Huang X, Calvo-Lozano O, Suvakov S, Lechuga LM, Garovic VD, Stybayeva G, Revzin A. Using Electrochemical Immunoassay in a Novel Microtiter Plate to Detect Surface Markers of Preeclampsia on Urinary Extracellular Vesicles. ACS Sens 2023; 8:207-217. [PMID: 36548998 DOI: 10.1021/acssensors.2c02077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) are lipid bilayer nanovesicles secreted by cells. EVs contain biological information related to parental cells and provide biomarkers for disease diagnosis. We have previously shown that the levels of podocin and nephrin expression on urinary EVs may be used to diagnose renal injury associated with preeclampsia. This paper describes a nanoparticle-enabled immunoassay integrated with an electrochemical plate for quantifying podocin and nephrin expression in urinary EVs. The strategy entailed capturing EVs on an electrode surface and then labeling EVs with gold nanoparticles that are both functionalized with antibodies for target specificity and impregnated with redox-active metal ions for electrochemical detection. These immunoprobes produced an electrochemical redox signal proportional to the expression level of EV surface markers. Electrochemical immunoassays were carried out in a novel microtiter plate that contained 16 wells with working electrodes connected to onboard counter/reference electrodes via capillary valves. Upon validation with recombinant proteins, a microtiter plate was used for analysis of urinary EVs from healthy and preeclamptic pregnant women. This analysis revealed a higher podocin to nephrin ratio for preeclamptic women compared to healthy controls (4.31 vs 1.69) suggesting that this ratio may be used for disease diagnosis.
Collapse
Affiliation(s)
- Seonhwa Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Alan M Gonzalez-Suarez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - XuHai Huang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Olalla Calvo-Lozano
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBERBBN and BIST, Barcelona 08193, Spain
| | - Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBERBBN and BIST, Barcelona 08193, Spain
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States.,Sersense Inc., Rochester, Minnesota 55905, United States
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
16
|
Sfragano PS, Pillozzi S, Condorelli G, Palchetti I. Practical tips and new trends in electrochemical biosensing of cancer-related extracellular vesicles. Anal Bioanal Chem 2023; 415:1087-1106. [PMID: 36683059 PMCID: PMC9867925 DOI: 10.1007/s00216-023-04530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 01/24/2023]
Abstract
To tackle cancer and provide prompt diagnoses and prognoses, the constantly evolving biosensing field is continuously on the lookout for novel markers that can be non-invasively analysed. Extracellular vesicles (EVs) may represent a promising biomarker that also works as a source of biomarkers. The augmented cellular activity of cancerous cells leads to the production of higher numbers of EVs, which can give direct information on the disease due to the presence of general and cancer-specific surface-tethered molecules. Moreover, the intravesicular space is enriched with other molecules that can considerably help in the early detection of neoplasia. Even though EV-targeted research has indubitably received broad attention lately, there still is a wide lack of practical and effective quantitative procedures due to difficulties in pre-analytical and analytical phases. This review aims at providing an exhaustive outline of the recent progress in EV detection using electrochemical and photoelectrochemical biosensors, with a focus on handling approaches and trends in the selection of bioreceptors and molecular targets related to EVs that might guide researchers that are approaching such an unstandardised field.
Collapse
Affiliation(s)
- Patrick Severin Sfragano
- grid.8404.80000 0004 1757 2304Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| | - Serena Pillozzi
- grid.24704.350000 0004 1759 9494Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Gerolama Condorelli
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy ,grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Ilaria Palchetti
- grid.8404.80000 0004 1757 2304Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| |
Collapse
|
17
|
Wang S, He Y, Lu J, Wang Y, Wu X, Yan G, Fang X, Liu B. All-in-One Strategy for Downstream Molecular Profiling of Tumor-Derived Exosomes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36341-36352. [PMID: 35916896 DOI: 10.1021/acsami.2c07143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In light of the significance of exosomes in cancer diagnosis and treatment, it is important to understand the components and functions of exosomes. Herein, an all-in-one strategy has been proposed for comprehensive characterization of exosomal proteins based on nanoporous TiO2 clusters acting as both an extractor for exosome isolation and a nanoreactor for downstream molecular profiling. With the improved hydrophilicity and inherent properties of TiO2, exosomes can be captured by a versatile nanodevice through the specific binding and hydrophilicity interaction synergistically. The strong concerted effect between exosomes and nanodevices ensured high efficiency and specificity of exosome isolation with high recovery and low contaminations. Meanwhile, highly efficient downstream proteomic analysis of the purified exosomes was also enabled by the nanoporous TiO2 clusters. Benefiting from the porous structure of the nanodevice, the lysed exosomal proteins are highly concentrated in the nanopore to achieve high-efficiency in situ proteolytic digestion. Therefore, the unique features of the TiO2 clusters ensured that all the complex steps about isolation and analysis of exosomes were completed efficiently in one simple nanodevice. The concept was first proved with exosomes from cell culture medium, where a high number of identified total proteins and protein groups in exosomes were obtained. Taking advantage of these attractive merits, the first example of the integrated platform has been successfully applied to the analysis of exosomes in complex real-case samples. Not only 196 differential protein biomarker candidates were discovered, but also many more significant cellular components and functions related to gastric cancer were found. These results suggest that the nanoporous TiO2 cluster-based all-in-one strategy can serve as a simple, cost-effective, and integrated platform to facilitate comprehensive analysis of exosomes. Such an approach will provide a valuable tool for the study of exosome markers and their functions.
Collapse
Affiliation(s)
- Shurong Wang
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Ying He
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Jiayin Lu
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Yuqing Wang
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Guoquan Yan
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoni Fang
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, School of Pharmacy, Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
18
|
Eller MJ, Sandoval JM, Verkhoturov SV, Schweikert EA. Nanoprojectile Secondary Ion Mass Spectrometry for Nanometrology of Nanoparticles and Their Interfaces. Anal Chem 2022; 94:7868-7876. [PMID: 35594187 DOI: 10.1021/acs.analchem.2c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanoscale molecular characterization plays a crucial role in enhancing our insights into fundamental and materials processes occurring at the nanoscale. However, for many traditional techniques, measurements on different ensembles are mixed and the analytical result reflects the average surface composition or arrangement. Advances in nanometrologies that allow for measurements to be differentiated based on the chemical environment examined are critical for accurate analysis. Here, we present a variant of secondary ion mass spectrometry, SIMS, termed nanoprojectile SIMS, NP-SIMS, capable of nanoscale molecular analysis. The technique examines the sample with a suite, 106-107, of individual gold nanoprojectiles (e.g., Au4004+) which stochastically probe the surface. Analysis of coemitted ions from each impact allows for the inspection of colocalized moieties within the ejected volume of a single projectile impact (10-15 nm in diameter). If some of these 106-107 measurements arise from nanodomains of similar composition, data can be grouped based on the detected secondary ions. We applied the method to examine a mixture of three different-sized nanoparticles with identical metal cores (3-5 nm in diameter), differing in the length of the attached ligand (decanetiol, tetradecanethiol, and hexadecanethiol). Using NP-SIMS, we determined the relative abundance of the three particles on the surface and isolated measurements based on the impact parameter between the impacting nanoprojectile and the surface particle, demonstrating that measurements occurring near the center of the particle can be differentiated from those at the particle-particle and particle-substrate interfaces. The results suggest that the described methodology is well-suited for molecular analysis of nanoassemblies and may be applied for tracking defects. Here we demonstrate that, using NP-SIMS, ensemble averaging can be avoided and molecular analysis can be undertaken at a scale below 5 nm, allowing for nanoscale molecular analysis of nano-objects and their interfaces.
Collapse
Affiliation(s)
- Michael J Eller
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jesse M Sandoval
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | - Emile A Schweikert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|