1
|
Ou Z, Zheng YJ, Li C, Sun K. Role of A-Site Cation Hydrogen Bonds in Hybrid Organic-Inorganic Perovskites: A Theoretical Insight. J Phys Chem Lett 2025; 16:802-810. [PMID: 39810628 DOI: 10.1021/acs.jpclett.4c03211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Hybrid organic-inorganic halide perovskites (HOIPs) have garnered a significant amount of attention due to their exceptional photoelectric conversion efficiency. However, they still face considerable challenges in large-scale applications, primarily due to their instability. One key factor influencing this instability is the lattice softness attributed to the A-site cations. In this study, we investigated the effects of four different A-site cations (MA, FA, EA, and GA) on the lattice softness of perovskites by using a combination of ab initio molecular dynamics and first-principles calculations. Our results demonstrate that an increase in the number of hydrogen bonds for A-site cations correlates with enhanced lattice and atomic fluctuations, resulting in a reduction in the bulk modulus and an increase in the lattice softness. The strength of hydrogen bonding of the A-site cation increases the rotational energy barrier of the cation, along with the formation energy and kinetic coupling between the A-site cation and the [PbI6]4- octahedron. Consequently, this increases the lifetime of hydrogen bonding and enhances the rigidity of the perovskite lattice. Notably, we found that EA cations, which exhibit stronger hydrogen bonding with fewer total hydrogen bonds, can limit the rotation of the A-site cation, inhibit the rocking motion of the [PbI6]4- octahedron, and thereby increase the rigidity of the inherently soft perovskite lattice, ultimately enhancing the stability of the material. Our findings elucidate the effect of hydrogen bonding in A-site cations on the lattice softness of perovskites, providing valuable theoretical insights for the design of more stable HOIPs.
Collapse
Affiliation(s)
- Zeping Ou
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yu Jie Zheng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Chen Li
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kuan Sun
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Mączka M, Dybała F, Herman AP, Paraguassu W, Barros Dos Santos AJ, Kudrawiec R. Pressure-induced giant emission enhancement, large band gap narrowing and rich polymorphism in two-dimensional 1,2,4-triazolium lead bromide perovskite. RSC Adv 2024; 14:38514-38522. [PMID: 39640525 PMCID: PMC11618524 DOI: 10.1039/d4ra07511k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024] Open
Abstract
Layered lead halide perovskites are attractive materials for optoelectronic applications. In this work, temperature-dependent photoluminescence (PL) as well as pressure-dependent Raman and PL studies of lead bromide comprising small disc shape 1,2,4-triazolium cations (Tz+) are reported. Temperature-dependent studies reveal that at room-temperature (RT) Tz2PbBr4 exhibits narrow emission at 2.89 eV related to a free exciton (FE). At low temperature, three new narrow and weakly red-shifted bands as well as a very broad and strongly red-shifted band near 2.2 eV appear. The narrow and broad bands are attributed to self-trapped excitons (STEs) trapped by shallow and deep donors (acceptors), respectively. Pressure-dependent Raman studies revealed the presence of three pressure-induced phase transitions near 2, 6 and 8 GPa to phases II, III and IV, associated with increased distortion of the inorganic subnetwork and apperance of a static disorder in phase IV. These structural changes affect the excitonic emission, which changes from a strong red shift on compression in the ambient pressure I to a weaker red shift in phase II, negligible shift in phase III and blue shift in phase IV. Moreover, a new narrow and weakly red-shifted band appears in phases II-IV. Most importantly, PL intensity increases 16.7 times when pressure changes from ambient to 7.77 GPa but decreases in phase IV. The increase in PL intensity can be attributed to the increase in STE formation energy and activation energy for non-radiative recombination, while the decrease in intensity may be related to the formation of point defects, which are the source of non-radiative recombination. Overall, high-pressure PL data show that application of external pressure allows band gap engineering and giant enhancement of the PL efficiency of Tz2PbBr4 perovskite.
Collapse
Affiliation(s)
- Mirosław Mączka
- W. Trzebiatowski Institute of Low Temperature and Structural Research of the Polish Academy of Sciences Okólna 2 Wroclaw 50-422 Poland
| | - Filip Dybała
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 Wrocław 50-370 Poland
| | - Artur P Herman
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 Wrocław 50-370 Poland
| | - Waldeci Paraguassu
- Faculdade de Fisica, Universidade Federal do Para Belem 66075-110 Brazil
| | | | - Robert Kudrawiec
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 Wrocław 50-370 Poland
| |
Collapse
|
3
|
Sun Y, Cao B, Chen S, Wang X, Duan D, Tian F, Cui T. A Discovery of Pressure-Induced New Semiconductor Electronic Phase Transitions by DFT Calculations: Introducing a Glimpse of a Novel Semiconductor Family. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60482-60490. [PMID: 39466260 DOI: 10.1021/acsami.4c12029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
This study introduces a discovery of pressure-induced new semiconductor electronic phase transitions. A novel semiconductor family that exhibits pressure-induced nonmonotonic changes in band gaps was found and meets the definition of phase transitions, challenging the traditional understanding of linear and monotonic band gap modification through pressurization. Our findings suggest a complex interplay of atomic spacing and electron orbital contributions under varying pressure conditions, resulting in the variation of band gaps. This behavior, which includes three distinct steps: first, narrowing, second, broadening, and third, narrowing again and ultimately metalizing; some compounds could bypass step 1, has potential applications in piezoelectric and semiconductor technologies. We propose two new semiconductor electronic phase transitions (SEPT) associated with specific inflection points in the pressure-dependent band gap curve. Our results open avenues for further research into the electronic properties of crystals under high pressure, with the ultimate goal of uncovering the more profound physical principles governing these phenomena.
Collapse
Affiliation(s)
- Yibo Sun
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Bohan Cao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Shi Chen
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xinwei Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Defang Duan
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Fubo Tian
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Tian Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Saski M, Sobczak S, Ratajczyk P, Terlecki M, Marynowski W, Borkenhagen A, Justyniak I, Katrusiak A, Lewiński J. Unprecedented Richness of Temperature- and Pressure-Induced Polymorphism in 1D Lead Iodide Perovskite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403685. [PMID: 38813722 DOI: 10.1002/smll.202403685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Indexed: 05/31/2024]
Abstract
Inherent features of metal halide perovskites are their softness, complex lattice dynamics, and phase transitions spectacularly tuning their structures and properties. While the structural transformations are well described and classified in 3D perovskites, their 1D analogs are much less understood. Herein, both temperature- and pressure-dependent structural evolutions of a 1D AcaPbI3 perovskitoid incorporating acetamidinium (Aca) cation are examined. The study reveals the existence of nine phases of δ-AcaPbI3, which present the most diverse polymorphic collection among known perovskite materials. Interestingly, temperature- and pressure-triggered phase transitions in the 1D perovskotoid exhibit fundamentally different natures: the thermal transformations are mainly associated with the collective translations of rigid polyanionic units and ordering/disordering dynamics of Aca cations, while the compression primarily affects inorganic polymer chains. Moreover, in the 1-D chains featuring the face-sharing connection mode of the PbI6 octahedra the Pb···Pb distances are significantly shortened compared to the corner-sharing 3D perovskite frameworks, hence operating in the van der Waals territory. Strikingly, a good correlation is found between the Pb···Pb distances and the pressure evolution of the bandgap values in the δ-AcaPbI3, indicating that in 1D perovskitoid structures, the contacts between Pb2+ ions are one of the critical parameters determining their properties.
Collapse
Affiliation(s)
- Marcin Saski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Szymon Sobczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, Poznań, 61-614, Poland
| | - Paulina Ratajczyk
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, Poznań, 61-614, Poland
| | - Michał Terlecki
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Wojciech Marynowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Aleksandra Borkenhagen
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Andrzej Katrusiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, Poznań, 61-614, Poland
| | - Janusz Lewiński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| |
Collapse
|
5
|
Cao P, Liu YT, Men JT, Zheng X, Zhang W, He L, Ye Q. Dimension-Dependent Phase Transitions, Ferroelasticity, and Photoluminescence in Hybrid Organic-Inorganic Materials. Inorg Chem 2023; 62:16898-16904. [PMID: 37782683 DOI: 10.1021/acs.inorgchem.3c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
[(CH3)3P(CH2)2OH]2Cd3(SCN)8 (1) and [(CH3)3P(CH2)2OH]Cd(SCN)3 (2) were obtained with completely different structures and properties under the same synthesis conditions. Compound 1, showing green fluorescence, has a rare three-dimensional 4,6-connected fsh topology having (43.63)2(46.66.83) Schläfli notation, while compound 2 with blue-violet phosphorescence displays a one-dimensional perovskite structure with an infinite {[Cd(SCN)3]-}∞ chain and exhibits both ferroelastic and dielectric switching characteristics.
Collapse
Affiliation(s)
- Peng Cao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Yu-Ting Liu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Jin-Tao Men
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Xuan Zheng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Lei He
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Qiong Ye
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
6
|
Wu LK, Zou QH, Yao HQ, Ye HY, Li JR. Zero-dimensional organic-inorganic hybrid manganese bromide with coexistence of dielectric-thermal double switches and efficient photoluminescence. Dalton Trans 2023; 52:11558-11564. [PMID: 37545469 DOI: 10.1039/d3dt01823g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Zero-dimensional (0D) hybrid metal halides have attracted much attention due to their rich composition, excellent optical stability, large exciton binding energy, etc. Photoelectric switchable multifunctional materials can integrate multiple physical properties (e.g., ferroelectricity, photoluminescence, magnetic, etc.) into one device and are widely used in many fields such as smart switches, sensors, etc. However, multifunctional materials with thermal energy storage, stimulant dielectric response, and light-emitting properties are rarely reported. Here, we synthesized a new organic-inorganic hybrid metal halide single crystal [TEMA]2MnBr4 (1) (TEMA+ = triethylmethylammonium). Compound 1 undergoes a reversible phase transition at a high temperature of 344/316 K, having a large thermal hysteresis of 28 K and exhibits high stability dielectric switching characteristics near the phase transition temperature. The single crystal exhibits green emission at 513 nm under UV excitation, originating from the 4T1g(G) → 6A1g(S) transition of Mn2+ ions. Excitingly, this single crystal's photoluminescence quantum yield (PLQY) is as high as 80.78%. This work provides a strategy for the development of organic-inorganic hybrid optoelectronic multifunctional materials with high-efficient light emission and switchable dielectric properties.
Collapse
Affiliation(s)
- Ling-Kun Wu
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Qing-Hua Zou
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Hai-Quan Yao
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Jian-Rong Li
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| |
Collapse
|
7
|
Zhang H, You X, Zhang M, Guo W, Wei Z, Cai H. Two metal-free perovskite molecules with different 3D frameworks show reversible phase transition, dielectric anomaly and SHG effect. Dalton Trans 2023; 52:1753-1760. [PMID: 36655610 DOI: 10.1039/d2dt03889g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Three-dimensional (3D) hybrid organic-inorganic perovskites (HOIPs) have attracted tremendous research interest due to their unique structure and promising applications. However, research on the design, synthesis and properties of this kind of metal-free crystalline material is still in the exploratory stage. Herein, two 3D perovskite molecules [1,4-3.2.2-dabcn]NH4Br3 (1) and [1,4-3.2.2-dabcn]NH4I3·0.5H2O (2) were obtained by reacting 1,4-diazabicyclo[3.2.2]nonane (1,4-3.2.2-dabcn) with NH4X (X = Br and I) in the corresponding concentrated halogen acids. The single X-ray diffraction results demonstrated that the inorganic framework structures in compounds 1 and 2 constructed with NH4Br and NH4I are completely different, caused by the radius of the bromide ion being smaller than that of the iodide ion. The 3D framework of compound 1 is constructed with a coplanar dimer [(NH4)2Br6]2- as the basic building unit, leading to the expanded 3D perovskite framework structure with a larger cavity to accommodate the 1,4-3.2.2-dabcn molecule. Nevertheless, compound 2 adopts a familiar 3D crystal framework structure with corner-sharing [(NH4)I6] octahedra, where the [1,4-3.2.2-dabcn] cations and water solvent molecule are confined in the cavities enclosed by the octahedra. Notably, both compounds exhibit reversible phase transition, dielectric anomaly and the second harmonic generation (SHG) effect. From the perspective of molecular design, this work is of great significance to guide the construction of new 3D metal-free perovskite molecular materials with reversible properties.
Collapse
Affiliation(s)
- Haina Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Xiuli You
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Mengxia Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Wenjing Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
8
|
Ratté J, Macintosh MF, DiLoreto L, Liu J, Mihalyi-Koch W, Hautzinger MP, Guzei IA, Dong Z, Jin S, Song Y. Spacer-Dependent and Pressure-Tuned Structures and Optoelectronic Properties of 2D Hybrid Halide Perovskites. J Phys Chem Lett 2023; 14:403-412. [PMID: 36622300 DOI: 10.1021/acs.jpclett.2c03555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Compared with their 3D counterparts, 2D hybrid organic-inorganic halide perovskites (HOIPs) exhibit enhanced chemical stabilities and superior optoelectronic properties, which can be further tuned by the application of external pressure. Here, we report the first high-pressure study on CMA2PbI4 (CMA = cylcohexanemethylammonium), a 2D HOIP with a soft organic spacer cation containing a flexible cyclohexyl ring, using UV-visible absorption, photoluminescence (PL) and vibrational spectroscopy, and synchrotron X-ray microdiffraction, all aided with density functional theory (DFT) calculations. Substantial anisotropic compression behavior is observed, as characterized by unprecedented negative linear compressibility along the b axis. Moreover, the pressure dependence of optoelectronic properties is found to be in strong contrast with those of 2D HOIPs with rigid spacer cations. DFT calculations help to understand the compression mechanisms that lead to pressure-induced bandgap narrowing. These findings highlight the important role of soft spacer cations in the pressure-tuned optoelectronic properties and provide guidance to the design of new 2D HOIPs.
Collapse
Affiliation(s)
- Jesse Ratté
- Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7, Canada
| | | | - Lauren DiLoreto
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Jingyan Liu
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Willa Mihalyi-Koch
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Matthew P Hautzinger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zhaohui Dong
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, CAS, Shanghai, 201204, PR China
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yang Song
- Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|