1
|
Zeng J, Zhang Y, Zeng S, Li J, Fang Y, Qian L, Pubu L, Chen S. First-principles calculation on electronic properties of hydrogen evolution reaction of Ni-based electrode surfaces with different monatomic doping. J Mol Graph Model 2024; 130:108790. [PMID: 38749235 DOI: 10.1016/j.jmgm.2024.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
At present, the hydrogen evolution reaction (HER) of Ni-based electrode has an important influence on water electrolysis hydrogen production technology, involving complex electrochemical process of electrode. In this project, Materials Studio (MS) software was used to design and construct Ni-based electrode surface (NES) models with monatomic Mo, Co, Fe, Cr doping, and the NES models attached 1 H atom and 2H atoms were denoted as the NES-H models and NES-2H model, respectively. Then the first-principles calculation was carried out. The results showed that the doping of different atoms can effectively change the work function of the pure Ni. In the charge transfer process of the four NES-2H models, the distance between the two H atoms is most affected by Mo doping, and they leave the Ni electrode surface as a single H ion, respectively, while the effect on Co, Fe and Cr doping is relatively consistent, and they leave the Ni electrode surface with H2 molecules, respectively. The doping of four single atoms changes the distance of valence band (VB) top and conduction band (CB) bottom from Fermi level in NES, NES-H and NES-2H models, and affects the HER, in which Mo doping has the greatest effect. The TDOS of the above models is mainly derived from the PDOS of the d orbitals of the doped atoms and Ni atoms. The results will provide a theoretical basis for the research and development of Ni-based electrode materials in HER.
Collapse
Affiliation(s)
- Jianping Zeng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Department of Chemistry, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Shuyu Zeng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jingwen Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yuchen Fang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Ling Qian
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Luobu Pubu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Song Chen
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
2
|
Li Y, Yi J, Qin R, Xie C, Zhao L, Lang X, Jiang Q. CeO 2 for modulating the electronic structure of nickel-cobalt bimetallic phosphides to promote efficient overall water splitting. J Colloid Interface Sci 2024; 661:690-699. [PMID: 38320405 DOI: 10.1016/j.jcis.2024.01.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 02/08/2024]
Abstract
The discovery of earth-abundant electrocatalysts to replace platinum and iridium for overall water splitting is a crucial step in reducing the cost of green hydrogen production. Transition metal phosphides have drawn wide attention due to their non-toxicity, good chemical stability, low cost, and stable catalytic activity in alkaline electrolytes. We report a three-dimensional flower-like structure composed of core-shell nanoneedles as catalysts, in which CeO2 is introduced on the surface of nickel cobalt bimetallic phosphide through electrodeposition. And X-ray photoelectron spectroscopy testing and DFT calculations show electron coupling and transfer between CeO2 and CoP3, thereby modulating the electronic structure of the catalyst surface and reducing the adsorption energy of H atoms during the catalytic process, resulting in enhanced catalytic activity. In 1 M KOH, it exhibits a low overpotential of 109 and 296 mV to achieve the current density of 50 mA cm-2 for HER and OER, respectively. When used as both cathode and anode as a bifunctional catalyst, a voltage of only 1.77 V is required to achieve a current density of 50 mA cm-2, demonstrating great industrial potential.
Collapse
Affiliation(s)
- Yutong Li
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Jianhui Yi
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Ruige Qin
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Chenxu Xie
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Lijun Zhao
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| | - Xingyou Lang
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
3
|
Hou JJ, Liu H, Wang T, Tian BQ, Yang Y, Zhang XM. Surface defect-engineered Fe doping in layered Co-based complex as highly efficient bifunctional electrocatalysts for overall water splitting. Dalton Trans 2024; 53:1245-1252. [PMID: 38112081 DOI: 10.1039/d3dt03486k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The electrocatalytic splitting of water to produce hydrogen is regarded as an efficient and promising strategy but is limited by its large overpotential; thus, a highly efficient electrocatalyst is urgently needed. Mixed metal doping is an important strategy in defect engineering because the heteroatoms can change the intrinsic structure to form defects by affecting the atomic coordination mode and adjusting the electronic structure, which is often accompanied by morphological changes. Herein, two-dimensional layered bimetallic Co-pydc containing axially coordinated water molecules was selected by producing surface defects through Fe doping in Co centers as bifunctional electrocatalysts for OER and HER. The optimized Co0.59Fe0.41-pydc possesses outstanding OER performance with the lowest overpotential of 262 mV to reach j = 10 mA cm-2, and Co0.75Fe0.25-pydc possesses superior HER performance with the lowest overpotential of 96 mV at j = 10 mA cm-2. Furthermore, the overall water splitting device assembled with Co0.59Fe0.41-pydc@NF//Co0.59Fe0.41-pydc@NF affords a current density of 10 mA cm-2 at only 1.687 V. This work emphasizes the surface defects formed by tuning the electronic structure of metal centres accompanied with morphological changes of bimetallic dopants for efficient overall water splitting.
Collapse
Affiliation(s)
- Juan-Juan Hou
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Taiyuan, Shanxi 030006, P. R. China.
| | - Huan Liu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Taiyuan, Shanxi 030006, P. R. China.
| | - Ting Wang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Taiyuan, Shanxi 030006, P. R. China.
| | - Bao-Qiang Tian
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Taiyuan, Shanxi 030006, P. R. China.
| | - Yang Yang
- College of Chemistry & Chemical Engineering, Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Taiyuan, Shanxi 030006, P. R. China.
- College of Chemistry & Chemical Engineering, Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| |
Collapse
|
4
|
Chen R, Meng L, Xu W, Li L. Cocatalysts-Photoanode Interface in Photoelectrochemical Water Splitting: Understanding and Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304807. [PMID: 37653598 DOI: 10.1002/smll.202304807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Indexed: 09/02/2023]
Abstract
Sluggish oxygen evolution reactions on photoanode surfaces severely limit the application of photoelectrochemical (PEC) water splitting. The loading of cocatalysts on photoanodes has been recognized as the simplest and most efficient optimization scheme, which can reduce the surface barrier, provide more active sites, and accelerate the surface catalytic reaction kinetics. Nevertheless, the introduction of cocatalysts inevitably generates interfaces between photoanodes and oxygen evolution cocatalysts (Ph/OEC), which causes severe interfacial recombination and hinders the carrier transfer. Recently, many researchers have focused on cocatalyst engineering, while few have investigated the effect of the Ph/OEC interface. Hence, to maximize the advantages of cocatalysts, interfacial problems for designing efficient cocatalysts are systematically introduced. In this review, the interrelationship between the Ph/OEC and PEC performance is classified and some methods for characterizing Ph/OEC interfaces are investigated. Additionally, common interfacial optimization strategies are summarized. This review details cocatalyst-design-based interfacial problems, provides ideas for designing efficient cocatalysts, and offers references for solving interfacial problems.
Collapse
Affiliation(s)
- Runyu Chen
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Linxing Meng
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Weiwei Xu
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
5
|
Xia W, Ma M, Guo X, Cheng D, Wu D, Cao D. Fabricating Ru Atom-Doped Novel FeP 4/Fe 2PO 5 Heterogeneous Interface for Overall Water Splitting in Alkaline Environment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44827-44838. [PMID: 37713509 DOI: 10.1021/acsami.3c07326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Developing bifunctional electrocatalysts with low-content noble metals and high activity and stability is crucial for water splitting. Herein, we reported a novel Ru doped FeP4/Fe2PO5 heterogeneous interface catalyst (Ru@FeP4/Fe2PO5) for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) by heat treatment coupling electrodeposition strategy. Experiments disclosed that Ru@FeP4/Fe2PO5 proclaimed excellent catalytic activity for the OER (249 mV@100 mA cm-2) and HER (49 mV@10 mA cm-2) in a 1 M KOH environment. More importantly, the mass activity and turnover frequency of Ru@FeP4/Fe2PO5 were 117 and 108 times higher than that of commercial RuO2 at an overpotential of 300 mV during the OER, respectively. In addition, the assembled Ru@FeP4/Fe2PO5 || Ru@FeP4/Fe2PO5 system could retain superior durability in a two-electrode system for 134 h at 300 mA cm-2. Further mechanism studies revealed that Ru atoms in Ru@FeP4/Fe2PO5 act in a key role for the excellent activity during water splitting because the electronic structure of Ru sites could be optimized by the interaction between Ru and Fe atoms at the interface to strengthen the adsorption of reaction intermediates. Besides, the introduction of Ru atoms could also enhance the charge transfer, which effectually accelerates the reaction kinetics. The strategy of anchoring Ru atom on novel heterostructure provides a promising path to boost the overall activity of electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Wei Xia
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Mengyao Ma
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaoyan Guo
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Dengfeng Wu
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Dong Cao
- State Key Laboratory of Organic-Inorganic Composites and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
6
|
Zhang JZ, Zhang Z, Zhang HB, Mei Y, Zhang F, Hou PX, Liu C, Cheng HM, Li JC. Prussian-Blue-Analogue-Derived Ultrathin Co 2P-Fe 2P Nanosheets for Universal-pH Overall Water Splitting. NANO LETTERS 2023; 23:8331-8338. [PMID: 37647133 DOI: 10.1021/acs.nanolett.3c02706] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The great interest in large-scale electrochemical water splitting toward clean hydrogen has spurred large numbers of studies on developing cost-efficient and high-performance bifunctional electrocatalysts. Here, a Prussian-blue-analogue-derived method is proposed to prepare honeycomb-like ultrathin and heterogeneous Co2P-Fe2P nanosheets on nickel foam, showing low overpotentials of 0.080, 0.088, and 0.109 V for the hydrogen evolution reaction (HER) at 10 mA cm-2 as well as 0.290, 0.370, and 0.730 V for the oxygen evolution reaction (OER) at 50 mA cm-2 in alkaline, acidic, and neutral electrolytes, respectively. When directly applied for universal-pH water electrolysis, excellent performances are achieved especially at ultralow voltages of 1.45 V at 10 mA cm-2, 1.66 V at 100 mA cm-2, and 1.79 V at 500 mA cm-2 under alkaline conditions. In situ Raman spectroscopy measurements demonstrate that the excellent HER performance can be attributed to heterogeneous Co2P-Fe2P while the ultrahigh alkaline OER performance originates from reconstruction-induced oxyhydroxides.
Collapse
Affiliation(s)
- Ju-Zhen Zhang
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Zichu Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Hong-Bo Zhang
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Yi Mei
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Feng Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People's Republic of China
| | - Peng-Xiang Hou
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | - Jin-Cheng Li
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| |
Collapse
|
7
|
Song XZ, Zhang T, Zhao YH, Ni JC, Pan Y, Tan Z, Wang XF. Heterostructure Interface Engineering in CoP/FeP/CeO x with a Tailored d-Band Center for Promising Overall Water Splitting Electrocatalysis. Inorg Chem 2023; 62:8347-8356. [PMID: 37200596 DOI: 10.1021/acs.inorgchem.3c00876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Accomplishing a green hydrogen economy in reality through water spitting ultimately relies upon earth-abundant efficient electrocatalysts that can simultaneously accelerate the oxygen and hydrogen evolution reactions (OER and HER). The perspective of electronic structure modulation via interface engineering is of great significance to optimize electrocatalytic output but remains a tremendous challenge. Herein, an efficient tactic has been explored to prepare nanosheet-assembly tumbleweed-like CoFeCe-containing precursors with time-/energy-saving and easy-operating features. Subsequently, the final metal phosphide materials containing multiple interfaces, denoted CoP/FeP/CeOx, have been synthesized via the phosphorization process. Through the optimization of the Co/Fe ratio and the content of the rare-earth Ce element, the electrocatalytic activity has been regulated. As a result, bifunctional Co3Fe/Ce0.025 reaches the top of the volcano for both OER and HER simultaneously, with the smallest overpotentials of 285 mV (OER) and 178 mV (HER) at 10 mA cm-2 current density in an alkaline environment. Multicomponent heterostructure interface engineering would lead to more exposed active sites, feasible charge transport, and strong interfacial electronic interaction. More importantly, the appropriate Co/Fe ratio and Ce content can synergistically tailor the d-band center with a downshift to enhance the per-site intrinsic activity. This work would provide valuable insights to regulate the electronic structure of superior electrocatalysts toward water splitting by constructing rare-earth compounds containing multiple heterointerfaces.
Collapse
Affiliation(s)
- Xue-Zhi Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu-Hang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jing-Chang Ni
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Pan
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Zhenquan Tan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Feng Wang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
N-Doped Carbon-Coupled Nickel Nitride Species/Ni2P Heterostructure for Enhancing Electrochemical Overall Water Splitting Performance. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Zhang Z, Lin X, Tang S, Xie H, Huang Q. Self-supported system of MoO2@Ni2P heterostructures as an efficient electrocatalyst for hydrogen evolution reactions in alkaline media. J Colloid Interface Sci 2023; 630:494-501. [DOI: 10.1016/j.jcis.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
|
10
|
Constructing hollow nanorod arrays by nickel–cobalt phosphide nanosheets as high-performance electrocatalysts for urea-assisted energy-efficient hydrogen generation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Zhang Q, Sun M, Yao M, Zhu J, Yang S, Chen L, Sun B, Zhang J, Hu W, Zhao P. Interfacial engineering of an FeOOH@Co3O4 heterojunction for efficient overall water splitting and electrocatalytic urea oxidation. J Colloid Interface Sci 2022; 623:617-626. [DOI: 10.1016/j.jcis.2022.05.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022]
|
12
|
Wang H, Song AJ, Chen H, Zhang WM, Xue ZH. Charge-Storage Nickel Substrate-Boosted CuP 2 Nanosheet for the Electrochemical Oxygen Evolution Reaction. Inorg Chem 2022; 61:12489-12493. [PMID: 35587196 DOI: 10.1021/acs.inorgchem.2c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrochemical oxygen evolution reaction (OER) is an essential anodic reaction that converts sustainable energy into chemical fuels, as it can provide protons and electrons. One of the most challenging research directions for the practical application of the OER is the elevation of the activity of noble-metal-free electrocatalysts. Here, we report that the nickel foam can be used as an electron-deficient substrate to tune the surface oxidation state of catalytic electrodes and thus boost the OER activity of CuP2 nanosheets via a charge-storage mechanism. The as-obtained self-standing CuP2/Ni electrodes delivered a current density of 220 mA cm-2 at 370 mV overpotential, which is approximately 5.5 times higher than the benchmarked IrO2 on nickel foam. This work sheds some new light on the design of low-cost electrocatalysts or electrodes with high activity for the electrochemical OER.
Collapse
Affiliation(s)
- Hao Wang
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China
| | - A-Jing Song
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Hong Chen
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Wei-Meng Zhang
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Zhong-Hua Xue
- Department of Applied Chemistry, School of Science, Anhui Agricultural University, Hefei 230036, China.,KAUST Catalysis Center (KCC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
13
|
Ying Q, Ni S, Zhang H, Yu F, Yang Y. Boosting Synergy of Polymetal Phosphides by Core‐Shell Design of Prussian Blue Analogue Precursors as Electrocatalysts for Water Splitting. ChemCatChem 2022. [DOI: 10.1002/cctc.202200330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qi Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Shaofeng Ni
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Fengjiao Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| | - Yang Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
14
|
Xiang R, Wang X. Advanced Self‐Standing Electrodes for Water Electrolysis: A Mini‐review on Strategies for Further Performance Enhancement. ChemElectroChem 2022. [DOI: 10.1002/celc.202200029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rui Xiang
- Chongqing University of Science and Technology - New Campus: Chongqing University of Science and Technology Chemisty and Chemical Engneering No. 20, East University town road, Shapingba district 401331 Chongqing CHINA
| | - Xingyu Wang
- Chongqing University of Science and Technology - New Campus: Chongqing University of Science and Technology Chemisty and Chemcal Engneering CHINA
| |
Collapse
|
15
|
Cong Y, Chen X, Mei Y, Ye J, Li TT. CeO 2 decorated bimetallic phosphide nanowire arrays for enhanced oxygen evolution reaction electrocatalysis via interface engineering. Dalton Trans 2022; 51:2923-2931. [PMID: 35103730 DOI: 10.1039/d1dt03931h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To realize electrocatalytic water splitting for hydrogen production, the development of efficient and durable anode materials containing earth-abundant elements is of great significance. In this work, we demonstrate a novel heterostructure with easily depositing CeO2 nanoparticles on the surface of the metal-organic framework (MOF)-derived Co0.4Ni1.6P nanowire arrays. Such an interface engineering strategy triggers the formation of abundant oxygen vacancies and provides more electrocatalytically active sites. Besides, the synergistic effect in this composite can regulate the electronic structure, and lead to an enhanced charge-transfer ability. Benefiting from the above superiorities, this heterostructure exhibits remarkable electrocatalytic performance towards the oxygen evolution reaction (OER) in 1 M KOH electrolyte, requiring overpotentials (η) of 268 and 343 mV to yield current densities of 10 and 100 mA cm-2, respectively, accompanied by a low Tafel slope of 79.3 mV dec-1. Furthermore, the electrocatalytic performance of this heterostructure for the OER in simulated alkaline seawater (1 M KOH + 0.5 M NaCl) was also studied, and it achieved low η values of 345 and 394 mV to drive 100 and 200 mA cm-2, respectively. This work presents a simple approach to fabricate heterostructural electrocatalysts with CeO2 nanoparticles for high-performance water/seawater electrolysis.
Collapse
Affiliation(s)
- Yikang Cong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Xingnan Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yan Mei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Jun Ye
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Ting-Ting Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China. .,Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo 315211, China
| |
Collapse
|