1
|
Bhutani N, Murugesan P, Baro S, Koner RR. Layered double hydroxide-derived bimetallic-MOF as a promising platform: Urea-coupled water oxidation and supercapattery-driven water electrolyzer. J Colloid Interface Sci 2025; 683:1087-1099. [PMID: 39787732 DOI: 10.1016/j.jcis.2024.12.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
Developing a two-dimensional (2D) ultrathin metal-organic framework plays a significant role in energy conversion and storage systems. This work introduced a facile strategy for engineering ultrathin NiMn-MOF nanosheets on Ni foam (NF) via in situ conversion from NiMn-layered double hydroxide (LDH). The as-synthesized LDH-derived NiMn-MOF (LDH-D NiMn-MOF) nanosheet exhibited an overpotential of 350 mV to drive a current density of 100 mA cm-2 during oxygen evolution reaction (OER) owing to its better redox activity, hierarchical architecture, and intercalating ability. The similar effective catalytic trend was noticed during the urea-assisted water oxidation process. The developed catalyst required only a potential of 1.39 V vs. RHE at 100 mA cm-2 towards urea oxidation reaction (UOR). Moreover, the urea-assisted overall water-splitting voltage was found to be 1.5 V at the current density of 10 mA cm-2. Furthermore, the same catalyst was explored as an energy-storage material for supercapattery application with an aerial specific capacity value of 2613.9 mC cm-2 at 1 mA cm-2 which was found to be 1.5 times higher than NiMn-LDH (1724.3 mC cm-2). Additionally, an aqueous asymmetric supercapattery device was fabricated which demonstrated the best electrochemical performance and provided a maximum energy density of 64.1 Wh kg-1 at a power density of 493 W kg-1 with 77.8 percent capacity retention after a continuous run of 8000 cycles at 10 mA cm-2 current density. Hence, the multifaceted properties of energy conversion and storage of LDH-D NiMn-MOF outline its performance in real-world applications.
Collapse
Affiliation(s)
- Nitika Bhutani
- School of Chemical sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Premkumar Murugesan
- School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Sushmita Baro
- School of Chemical sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Rik Rani Koner
- School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India.
| |
Collapse
|
2
|
Qiu L, Wu Z, Liu Y, Qin Z, Liu Y, Zhang J, Deng Y, Hu W. Mn Doping at High-Activity Octahedral Vacancies of γ-Fe 2O 3 for Oxygen Reduction Reaction Electrocatalysis in Metal-Air Batteries. Angew Chem Int Ed Engl 2025; 64:e202421918. [PMID: 39628092 DOI: 10.1002/anie.202421918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Indexed: 12/17/2024]
Abstract
γ-Fe2O3 with the intrinsic cation vacancies is an ideal substrate for heteroatom doping into the highly active octahedral sites in spinel oxide catalysts. However, it is still a challenge to confirm the vacancy location of γ-Fe2O3 through experiments and obtain enhanced catalytic performance by preferential occupation of octahedral sites for heteroatom doping. Here, a Mn-doped γ-Fe2O3 incorporated with carbon nanotubes catalyst was developed to successfully achieve preferential doping into highly active octahedral sites by employing γ-Fe2O3 as the precursor. Further, the vacancy in γ-Fe2O3 was only located on octahedral sites rather than tetrahedral ones, which was first proved by direct experimental evidence through the clarification doping sites of Mn. Notably, the catalyst shows outstanding activity towards oxygen reduction reaction with the half-wave potential of 0.82 V and 0.64 V vs. reversible hydrogen electrode in alkaline and neutral electrolytes, respectively, as well as the maximum power density of 179 mWcm-2 and 403 mWcm-2 for Mg-air batteries and Al-air batteries, respectively. It could be attributed to the synergistic effect of the doping Mn on octahedral sites and the substrate γ-Fe2O3 along with the modification of the adsorption/desorption properties for oxygen-containing intermediates as well as the optimization of the reaction energy barriers.
Collapse
Affiliation(s)
- Liuzhe Qiu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.Institution
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhong Wu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yingjie Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhenbo Qin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yichun Liu
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Yida Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.Institution
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
3
|
Zhu M, Zhang H, Zhang S, Yao H, Shi X, Xu S. Chemoresistive Gas Sensors Based on Noble-Metal-Decorated Metal Oxide Semiconductors for H 2 Detection. MATERIALS (BASEL, SWITZERLAND) 2025; 18:451. [PMID: 39859922 PMCID: PMC11767018 DOI: 10.3390/ma18020451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Hydrogen has emerged as a prominent candidate for future energy sources, garnering considerable attention. Given its explosive nature, the efficient detection of hydrogen (H2) in the environment using H2 sensors is paramount. Chemoresistive H2 sensors, particularly those based on noble-metal-decorated metal oxide semiconductors (MOSs), have been extensively researched owing to their high responsiveness, low detection limits, and other favorable characteristics. Despite numerous recent studies and reviews reporting advancements in this field, a comprehensive review focusing on the rational design of sensing materials to enhance the overall performance of chemoresistive H2 sensors based on noble-metal-decorated MOFs is lacking. This review aims to address this gap by examining the principles, applications, and challenges of chemoresistive H2 sensors, with a specific focus on Pd-decorated and Pt-decorated MOSs-based sensing materials. The observations and explanations of strategies employed in the literature, particularly within the last three years, have been analyzed to provide insights into the latest research directions and developments in this domain. This understanding is essential for designing and fabricating highly efficient H2 sensors.
Collapse
Affiliation(s)
| | | | | | | | - Xuerong Shi
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (M.Z.); (H.Z.); (S.Z.); (H.Y.)
| | - Shusheng Xu
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (M.Z.); (H.Z.); (S.Z.); (H.Y.)
| |
Collapse
|
4
|
Sakthivel M, Ho KC. X-CoOTe ( X = S, Se, and P) with Oxygen/Tellurium Dual Vacancies and Banana Stem Fiber-Derived Carbon Fiber as Battery-Type Cathode and Anode Materials for Asymmetric Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18754-18767. [PMID: 38563749 DOI: 10.1021/acsami.3c18205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this work, we demonstrated the synthesis of anions (X = selenium (Se), sulfur (S), and phosphorus (P)) doped cobalt oxytelluride (X-CoOTe) with oxygen and tellurium dual vacancies using hydrothermal methods, followed by selenization, sulfurization, and phosphorization reactions. Especially, the Se-CoOTe-modified nickel foam (Se-CoOTe/NF) electrode delivered a higher specific capacity (752.95 C/g) and an extremely lower charge transfer resistance (0.87 Ω) than S-CoOTe/NF and P-CoOTe/NF due to the higher metallic conductivity of Se. Both oxygen and tellurium vacancies facilitate higher charge transfer conductivity, specific capacity, and stability. On the other hand, banana stem core fiber-derived activated carbon fiber (AC) with exfoliated carbon sheet, cracked surface, and corresponding high surface area boosts the excellent cycle stability up to 4000 cycles with capacitance retention of 100.29%. Thus, the asymmetric device (Se-CoOTe/NF//AC/NF) exhibited an extendable cell voltage (1.55 V), higher energy density (155.6 W h kg-1) at a power density (1356.2 W kg-1), and generous long-term stability (100% retention up to 10 000 cycles) in a liquid alkaline electrolyte. In the practicability test, the proposed asymmetric device mutually showed an increased operating voltage from 1.55 to 4.65 V for a three-series connection. In a three-series connection, a single white LED and an LED string glowed efficiently. This new finding will be very useful to develop tellurium-based chalcogenides and biowaste-derived carbon for energy storage applications.
Collapse
Affiliation(s)
- Mani Sakthivel
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Kuo-Chuan Ho
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Wan F, Liu R, Xia Y, Hu K, Lei Y, Wang C, Zhang S, Li S, Yang D, Zheng Y, Chen W. Phase-Modified Strongly Coupled δ/ε-MnO 2 Homojunction Cathode for Kinetics-Enhanced Zinc-Ion Batteries. Inorg Chem 2024; 63:6988-6997. [PMID: 38569109 DOI: 10.1021/acs.inorgchem.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Rechargeable Zn-MnO2 batteries using mild water electrolytes have garnered significant interest owing to their impressive theoretical energy density and eco-friendly characteristics. However, MnO2 suffers from huge structural changes during the cycles, resulting in very poor stability at high charge-discharge depths. Briefly, the above problems are caused by slow kinetic processes and the dissolution of Mn atoms in the cycles. In this paper, a 2D homojunction electrode material (δ/ε-MnO2) based on δ-MnO2 and ε-MnO2 has been prepared by a two-step electrochemical deposition method. According to the DFT calculations, the charge transfer and bonding between interfaces result in the generation of electronic states near the Fermi surface, giving δ/ε-MnO2 a more continuous distribution of electron states and better conductivity, which is conducive to the rapid insertion/extraction of Zn2+ and H+. Moreover, the strongly coupled Mn-O-Mn interfacial bond can effectively impede dissolution of Mn atoms and thus maintain the structural integrity of δ/ε-MnO2 during the cycles. Accordingly, the δ/ε-MnO2 cathode exhibits high capacity (383 mAh g-1 at 0.1 A g-1), superior rate performance (150 mAh g-1 at 5 A g-1), and excellent cycling stability over 2000 cycles (91.3% at 3 A g-1). Profoundly, this unique homojunction provides a novel paradigm for reasonable selection of different components.
Collapse
Affiliation(s)
- Fu Wan
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Ruiqi Liu
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Yaoyang Xia
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Kaida Hu
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Yu Lei
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Changding Wang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Sida Zhang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Shufan Li
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Da Yang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Yujie Zheng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Weigen Chen
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
- National Innovation Center for Industry-Education Integration of Energy Storage Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
6
|
Shen X, Huang L, Li S, Tang L, Lei Q, Zhao B, Hao H, Li W, Zeng M, He G. Trimetallic MOF-derived CoFeNi/Z-P NC nanocomposites as efficient catalysts for oxygen evolution reaction. Dalton Trans 2023; 52:17711-17716. [PMID: 37902882 DOI: 10.1039/d3dt02818f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
We used sodium hydroxide-mediated approach and tannic acid etching to prepare hollow structured trimetallic MOF-derived CoFeNi/Z-P NC nanocomposites. Remarkably, the resulting CoFeNi/Z-P NC nanocomposites have large specific surface area and mesoporous structure, making their active sites more accessible and mass transfer more effective. More complex trimetallic components provide greater possibilities for further improving electrocatalytic performance. The CoFeNi/Z-P NC nanocomposites demonstrate notable enhancements for the OER, and 10 mA cm-2 current density is achieved at a low overpotential of 244 mV, with a low Tafel slope of 66.2 mV dec-1 and have good stability in alkaline solutions. In addition, as a cathode material for overall alkaline water splitting, CoFeNi/Z-P NC is better than RuO2 with longer cycling stability.
Collapse
Affiliation(s)
- Xudun Shen
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Liping Huang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Shuaishuai Li
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Longnian Tang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Qiumei Lei
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Bowang Zhao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Huilian Hao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Wenyao Li
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
| | - Min Zeng
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, PR China.
| | - Guanjie He
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK.
| |
Collapse
|
7
|
Wu X, Qiu Y, Yang B, Li J, Cai W, Qin Y, Kong Y, Yin ZZ. Fabrication of CoSe 2/CoP with rich selenium- and phosphorus-vacancies and heterogeneous interfaces for asymmetric supercapacitors. J Colloid Interface Sci 2023; 651:128-137. [PMID: 37542888 DOI: 10.1016/j.jcis.2023.07.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/17/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
CoSe2/CoP with rich Se- and P-vacancies and heterogeneous interfaces (v-CoSe2/CoP) is grown on the surface of nickel foam via a two-step strategy: electrodeposition and NaBH4 reduction, which can be used as the cathode material in asymmetric supercapacitors. The SEM characterization reveals the honeycomb-like structure of the v-CoSe2/CoP, and the results of EPR, XPS and HRTEM reveal the existence of anionic vacancies and heterogeneous interfaces in the v-CoSe2/CoP. The as-fabricated v-CoSe2/CoP exhibits high specific capacitance (3206 mF cm-2 at 1.0 mA cm-2) and cyclic stability (91 % capacitance retention after 2000 cycles). An asymmetric supercapacitor is assembled by using the v-CoSe2/CoP and activated carbon (AC) as cathode and anode materials, respectively, which displays a high energy density of 40.6 Wh kg-1 at the power density of 211.5 W kg-1. The outstanding electrochemical performances of the v-CoSe2/CoP might be ascribed to the synergistic effects of Se- and P-vacancies and the heterogeneous interfaces in the v-CoSe2/CoP.
Collapse
Affiliation(s)
- Xingyue Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yiping Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Baozhu Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Qin
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
8
|
Ahmad R, Sohail A, Yousuf M, Majeed A, Mir A, Aalim M, Shah MA. P-N heterojunction NiO/ZnO nanowire based electrode for asymmetric supercapacitor applications. NANOTECHNOLOGY 2023; 35:065401. [PMID: 37879320 DOI: 10.1088/1361-6528/ad06d3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Nickel-based oxides are selected for their inexpensive cost, well-defined redox activity, and flexibility in adjusting nanostructures via optimization of the synthesis process. This communique explores the field of energy storage for hydrothermally synthesized NiO/ZnO nanowires by analysing their capacitive behaviour. The p-type NiO was successfully built onto the well-ordered mesoporous n-type ZnO matrix, resulting in the formation of p-n heterojunction artefacts with porous nanowire architectures. NiO/ZnO nanowire-based electrodes exhibited much higher electrochemical characteristics than bare NiO nanowires. The heterojunction at the interface between the NiO and ZnO nanoparticles, their specific surface area, as well as their combined synergetic influence, are accountable for the high specific capacitance (Cs) of 1135 Fg-1at a scan rate of 5 mV s-1. NiO/ZnO nanowires show an 18% dip in initial capacitance even after 6000 cycles, indicating excellent capacitance retention and low resistance validated by electrochemical impedance spectroscopy. In addition, the specific capacitance, energy and power density of the solid state asymmetric capacitor that was manufactured by employing NiO/ZnO as the positive electrode and activated carbon as the negative electrode were found to be 87 Fg-1, 23 Whkg-1and 614 Wkg-1, respectively. The novel electrode based on NiO/ZnO demonstrates excellent electrochemical characteristics all of which point to its promising application in supercapacitor devices.
Collapse
Affiliation(s)
- Reyaz Ahmad
- Department of Physics, National Institute of Technology Srinagar, Hazratbal, Srinagar 190006, (J&K), India
| | - Aamir Sohail
- Department of Physics, National Institute of Technology Srinagar, Hazratbal, Srinagar 190006, (J&K), India
| | - Mahvesh Yousuf
- Department of Physics, National Institute of Technology Srinagar, Hazratbal, Srinagar 190006, (J&K), India
| | - Asif Majeed
- Department of Physics, National Institute of Technology Srinagar, Hazratbal, Srinagar 190006, (J&K), India
| | - Arshid Mir
- Department of Physics, National Institute of Technology Srinagar, Hazratbal, Srinagar 190006, (J&K), India
| | - Malik Aalim
- Department of Physics, National Institute of Technology Srinagar, Hazratbal, Srinagar 190006, (J&K), India
| | - M A Shah
- Department of Physics, National Institute of Technology Srinagar, Hazratbal, Srinagar 190006, (J&K), India
| |
Collapse
|
9
|
Xu Y, Wang R, Feng C, Zhang X, Wang N, Zhang Q, Xie M, Xu Y, Jiao Y, Chen J. Controlling the electronic structure of Fe-MOF electrocatalyst for enhanced water splitting and urea oxidation: A plasma-assisted approach. J Colloid Interface Sci 2023; 650:1290-1300. [PMID: 37478746 DOI: 10.1016/j.jcis.2023.07.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
The design of high-performance electrocatalysts for water splitting and urea oxidation reactions requires effective regulation of their electronic structure and electrochemical surface area (ECSA). In this study, we developed an in-situ grown Fe-MOF electrocatalyst on Fe foam (FF) by using a combination of easy hydrothermal synthesis and advanced plasma technology (Fe-MOF/FF). By varying the plasma treatment time, we could tailor the surface morphology and electronic structure of the Fe-MOF/FF microrods. Meanwhile, density functional theory (DFT) calculations investigated the catalytic mechanism, revealing that plasma-treated Fe-MOF/FF has a lower energy barrier for water splitting and H* adsorption during the HER process, and higher catalytic activity for UOR. Additionally, the electronic density of optimized Fe-MOF/FF is significantly expanded near the Fermi level. Remarkably, our catalysts achieved exceptional activity in both water splitting and urea electrolysis, requiring only 1.54 V and 1.472 V, respectively, at 10 mA cm-2, with excellent stability. Our findings highlight the potential of plasma technology as a powerful tool for developing multifunctional electrocatalysts for clean energy and industrial wastewater treatment applications.
Collapse
Affiliation(s)
- Yanqiu Xu
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ran Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chao Feng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Nana Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Qiang Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Meng Xie
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yang Jiao
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China.
| | - Jianrong Chen
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
10
|
Zhang X, Huang M, Wang Y, Ni Y. Spongelike Bimetallic Selenides Derived from Prussian Blue Analogue on Layered Ni(II)-Based MOF for High-Efficiency Supercapacitors. Inorg Chem 2023; 62:18670-18679. [PMID: 37906098 DOI: 10.1021/acs.inorgchem.3c03041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Recently, employing metal-organic frameworks (MOFs) as precursors to prepare various metal oxides, sulfides, and selenides has drawn enormous attention in the field of energy storage. In this paper, the nanosheets of an organophosphate-based Ni-MOF were successfully synthesized and employed as the template to prepare the Prussian blue analogue (PBA) nanoslices and nanoparticles on the nanosheet (PBA/Ni-MOF-NS-x h, x h stands for the reaction time.) by an in situ etching method. After selenization by the solvothermal method, the PBA nanoslices and nanoparticles were transformed into spongelike bimetallic selenides (labeled as PBA/Ni-MOF-NS-x h-Se) decorated with some nanoparticles. All of the characterization results including PXRD, SEM, TEM, EDS, XPS, and BET demonstrated the successful transformation. Impressively, the as-synthesized PBA/Ni-MOF-NS-12 h-Se exhibited a high specific capacitance of 1897.90 F g-1 at a current density of 1 A g-1 and a superior capacitance retention rate of 73.32% as the current density increased to 20 A g-1. In addition, the asymmetric supercapacitor device, PBA/Ni-MOF-NS-12 h-Se//AC, delivered a high energy density of 30.69 W h kg-1 at 0.85 kW kg-1 and extraordinary cycling stability with an 83.00% capacitance retention rate over 5000 cycles.
Collapse
Affiliation(s)
- Xiudu Zhang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241002, China
| | - Mengya Huang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241002, China
| | - Yali Wang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241002, China
| | - Yonghong Ni
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
11
|
Lv H, Xiao Z, Zhai S, Wang X, Hao J, An Q. Designed formation of C/Fe 3O 4@Ni(OH) 2 cathode with enhanced pseudocapacitance for asymmetric supercapacitors. J Colloid Interface Sci 2023; 635:176-185. [PMID: 36586143 DOI: 10.1016/j.jcis.2022.12.137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
The rational design and synthesis of advanced electrode materials are significant for the applications of supercapacitors. Ferroferric oxide (Fe3O4), with its high theoretical capacitance is a renowned cathode material. Nevertheless, its low electronic conductivity and poor cycling stability during a long-term charge/discharge process limit its large-scale applications. In this work, the precise modulation of multiple components was reported to enhance electrochemical performance. The ternary heterostructures were fabricated by wrapping ultrathin nickel hydroxide (Ni(OH)2) nanosheets on the surfaces of Fe3O4 nanoparticles-loaded on sodium carboxymethyl cellulose (CMC)-derived porous carbon, named as C/Fe3O4@Ni(OH)2. Due to the large specific surface area and excellent conductivity of CMC-derived porous carbon and the abundant reaction sites of Ni(OH)2 nanosheets, the optimized C/Fe3O4@Ni(OH)2-1.0 sample exhibited the highest specific capacitance of 3072F g-1 at a current density of 0.5 A g-1. Furthermore, the assembled asymmetric supercapacitor (ASC) with activated carbon and C/Fe3O4@Ni(OH)2-1.0 as the negative and positive electrodes, respectively, showed an energy density of 123 W h kg-1 at 381 W kg-1, and a long-life stability with an excellent capacitance retention of 90.04 % after 10,000 cycles. The route for preparing composite electrode materials proposed in this work provides a reference for realizing high-performance energy storage devices.
Collapse
Affiliation(s)
- Hui Lv
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zuoyi Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Shangru Zhai
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xuting Wang
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jingai Hao
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingda An
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
12
|
Lu F, Ji Y, Shi D, Yao J, Pei L. Electrochemically activated 3D Mn doped NiCo hydroxide electrode materials toward high-performance supercapacitors. J Colloid Interface Sci 2023; 641:510-520. [PMID: 36958274 DOI: 10.1016/j.jcis.2023.03.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/28/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Metal doping and electrochemical reconstruction had been demonstrated to play a significant role in the preparation of advanced electrode materials, which is helpful to achieve high-performance supercapacitors. However, there was no report about the combination of two technologies to construct electrode materials and their applications in supercapacitors. Herein, a rational Mn doped NiCo sulfide compound with open structure composed of 2D ultra-thin nanosheets was designed via a Mn doping route. In order to further improve the energy storage performance of the resulted product, we adopted a simple electrochemical activation strategy to reconstruct it. It was found that the reconstructed sample not only exhibited an irreversible evolution of structure (from 2D sheet to 3D channel), but also the phase transformation (from metal sulfide to metal hydroxide). Benefiting from the stable 3D curved structure with numerous channels, multitudinous charge transfer provided by numerous valence states of metals and copious active sites by low crystalline state, the in-situ self-reconstructed sample exhibited superior capacitance. In details, the optimized product delivered excellent specific capacitance of 1462C g-1 (3655F/g) at 1 A g-1 and high rate capability of 66 % even at 5 A g-1. Moreover, the corresponding assembled asymmetric supercapacitor exhibited an excellent energy density of 141.8 Wh kg-1 at a power density of 850.1 W kg-1, and the capacitance retention rate was 96.6 % even after 5000 cycles, which was distinctly superior than thoseofthe previous similarmaterialsreported. In a word, this work provided a feasible and effective strategy to construct 3D Mn doped NiCo hydroxide electrode materials toward high-performance supercapacitors.
Collapse
Affiliation(s)
- Faxue Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China
| | - Yajun Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China.
| | - Dong Shi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China
| | - Junnan Yao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China
| | - Lijun Pei
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Jungong Road 334#, 200093 Shanghai, China
| |
Collapse
|
13
|
Design strategy for high-performance bifunctional electrode materials with heterogeneous structures formed by hydrothermal sulfur etching. J Colloid Interface Sci 2023; 633:608-618. [PMID: 36470140 DOI: 10.1016/j.jcis.2022.11.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022]
Abstract
The synthesis of efficient, stable, and green multifunctional electrode materials is a long-standing challenge for modern society in the field of energy storage and conversion. To this end, we successfully synthesized five bimetallic precursor materials with excellent performance by hydrothermal reaction with the assistance of a high concentration of polyvinylpyrrolidone (PVP), and then, sulfide etched the lamellar precursor materials among them to obtain the one-dimensional heterostructured samples. Benefiting from the synergistic effect of the bimetal and the continuous electron/ion transport structure, the samples displayed excellent bifunctional activity in supercapacitor and oxygen evolution reaction (OER). Regarding supercapacitors, the exceptional performance of 2817.2 F g-1 at 1 A g-1 was demonstrated, while the asymmetric supercapacitors made showed an extraordinary energy density of 150.2 Wh kg-1 at a power density of 618.5 W kg-1 and outstanding cycling performance (94.74% capacity retention after 20,000 cycles at 10 A g-1). Simultaneously, a wearable flexible electrode that can be wrapped around a finger was coated on a carbon cloth and was found to light up a 0.5-m-long strip of light. Moreover, it exhibited an ultralow oxygen reduction overpotential of 249 mV at 10 mA cm-2. Hence, our work provides a facile strategy to modulate the synthesis of heterogeneous structured sulfides with a continuous electron/ion transport pathway, which possesses excellent oxygen reduction electrocatalytic performance while meeting superior supercapacitor performance. Such work provides an effective approach for the construction of multifunctional electrochemical energy materials.
Collapse
|
14
|
Wang G, Xu Z, Li Z, Ding Y, Ge R, Xiang M, Wang G, Yan Z. Ni(OH)2/CoS heterostructure grown on carbon cloth for robust supercapacitor and methanol electrocatalytic oxidation. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Cobalt containing bimetallic ZIFs and their derivatives as OER electrocatalysts: A critical review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Zeng J, Devarayapalli K, Vattikuti SP, Shim J. In situ construction of SnO-NiO derived from metal-organic frameworks on nickel foam for energy storage devices. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Zhan F, Wang H, He Q, Xu W, Chen J, Ren X, Wang H, Liu S, Han M, Yamauchi Y, Chen L. Metal-organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors. Chem Sci 2022; 13:11981-12015. [PMID: 36349101 PMCID: PMC9600411 DOI: 10.1039/d2sc04012c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2023] Open
Abstract
Metal-ion hybrid capacitors (MIHCs) hold particular promise for next-generation energy storage technologies, which bridge the gap between the high energy density of conventional batteries and the high power density and long lifespan of supercapacitors (SCs). However, the achieved electrochemical performance of available MIHCs is still far from practical requirements. This is primarily attributed to the mismatch in capacity and reaction kinetics between the cathode and anode. In this regard, metal-organic frameworks (MOFs) and their derivatives offer great opportunities for high-performance MIHCs due to their high specific surface area, high porosity, topological diversity, and designable functional sites. In this review, instead of simply enumerating, we critically summarize the recent progress of MOFs and their derivatives in MIHCs (Li, Na, K, and Zn), while emphasizing the relationship between the structure/composition and electrochemical performance. In addition, existing issues and some representative design strategies are highlighted to inspire breaking through existing limitations. Finally, a brief conclusion and outlook are presented, along with current challenges and future opportunities for MOFs and their derivatives in MIHCs.
Collapse
Affiliation(s)
- Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Weili Xu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Jun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Xuehua Ren
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Haoyu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| | - Shude Liu
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science Tsukuba Ibaraki 305-0044 Japan
| | - Minsu Han
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane QLD 4072 Australia
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics, National Institute for Materials Science Tsukuba Ibaraki 305-0044 Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane QLD 4072 Australia
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
18
|
Zheng Y, Liu Q, Guan X, Liu Y, Nie S, Wang Y. Nitrogen Self-Doping Carbon Derived from Functionalized Poly(Vinylidene Fluoride) (PVDF) for Supercapacitor and Adsorption Application. MICROMACHINES 2022; 13:1747. [PMID: 36296100 PMCID: PMC9611783 DOI: 10.3390/mi13101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
A new synthetic strategy has been developed for the facile fabrication of a N-doped porous carbon (NC-800) material via a facile carbonization of functionalized poly(vinylidene fluoride) (PVDF). The prepared NC-800 exhibits good specific capacitance of 205 F/g at 1 A/g and cycle stability (95.2% retention after 5000 cycles at 1 A/g). The adsorption capacity of NC-800 on methylene blue and methyl orange was 780 mg/g and 800 mg/g, respectively. The facile and economical method and good performance (supercapacitor and adsorption) suggest that the NC-800 is a promising material for energy storage and adsorption.
Collapse
Affiliation(s)
- Yantao Zheng
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
- Xifeng Phosphorite Mine Co., Ltd., Guiyang 551100, China
| | - Qifei Liu
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| | - Xingyu Guan
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
- College of Material Engineering, Saint Petersburg State Technical University, 190013 Saint Petersburg, Russia
| | - Yuan Liu
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| | - Shengqiang Nie
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| | - Yi Wang
- College of Chemistry and Material Engineering, Guiyang University, Guiyang 550005, China
| |
Collapse
|
19
|
Electronically regulated FeOOH/c-NiMoO4 with hierarchical sandwich structure as efficient electrode for oxygen evolution and hybrid supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Li Y, Zhang Q, Song Z, Shu K, Yang Z, Hu H, Lu Y, Tang X, Zhou X. Manipulating the morphology and the electronic structures of nickel-cobalt selenides@N-doped carbon for aqueous alkaline batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Wang G, Yan Z, Ding Y, Xu Z, Li Z. Hierarchical core-shell nickel hydroxide@nitrogen-doped hollow carbon spheres composite for high-performance hybrid supercapacitor. J Colloid Interface Sci 2022; 628:286-296. [PMID: 35998454 DOI: 10.1016/j.jcis.2022.08.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Designing electrode materials with high performance and maximum utilization is of great desire for supercapacitors, which highly depend on the intrinsic electrochemical properties and the optimal frameworks of the electrode materials. The hierarchical core-shell structure with various types of pores can make the most of the electrode material due to the easy access of electrolyte into the interior electrode and large exposure of electrode into the electrolyte. In this work, nickel hydroxide@nitrogen-doped hollow carbon spheres (Ni(OH)2@NHCSs) electrode material with a hierarchical core-shell structure was obtained using a hard template and the following chemical-precipitation method. Ni(OH)2@NHCSs electrode displays an excellent specific capacity of 214.8 mA h g-1 (that is 1546.6 F g-1), higher than the Ni(OH)2 counterpart (108.9 mA h g-1, that is 784.1 F g-1) at 1 A g-1 in 2 M KOH electrolyte. The assembled Ni(OH)2@NHCSs||NHCSs hybrid supercapacitor (HSC) delivers an energy density of 37.5 W h kg-1 at 800.0 W kg-1 and an outstanding stability with 79.2% of retention rate for 10,000 cycles at a current density of 8 A g-1. The Ni(OH)2@NHCSs electrode exhibits excellent electrochemical performance primarily contributed by its unique hierarchical core-shell structure, high specific surface area and enhanced electrical conductivity.
Collapse
Affiliation(s)
- Guosheng Wang
- State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University, Wuhan 430056, PR China
| | - Zhaoxiong Yan
- State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University, Wuhan 430056, PR China.
| | - Yingjie Ding
- State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University, Wuhan 430056, PR China
| | - Zhihua Xu
- State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University, Wuhan 430056, PR China.
| | - Zhikun Li
- State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University, Wuhan 430056, PR China
| |
Collapse
|
22
|
Huang M, Sun C, Zhang X, Wang P, Xu S, Shi XR. The surface structure, stability, and catalytic performances toward O 2 reduction of CoP and FeCoP 2. Dalton Trans 2022; 51:10420-10431. [PMID: 35762394 DOI: 10.1039/d2dt01408d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The systematic atomistic level investigation of low-index surface structures, stabilities, and catalytic performances of CoP and FeCoP2 towards the O2 reduction reaction (ORR) is vital for their applications. Employing first-principles calculations, it is revealed that CoP and FeCoP2 present the same surface stability in the order of (101) ≈ (011) > (111) > (001) > (110) > (010) > (100). They also possess a similar Wulff equilibrium crystal shape with (101) and (011) exposing the largest surface area. From the electronic view, FeCoP2 presents improved electronic conductivity compared with CoP. From the energy view, whether FeCoP2 delivers improved electrocatalytic activity toward the ORR with respect to CoP depends on the reactive surfaces and sites. Among the 4 surfaces considered, only CoP(101), FeCoP2(101) and FeCoP2(011) delivered ORR performances theoretically when the bridge metal-metal site acts as the reactive center, which makes CoP(011) the only exception. CoP(101)-bCo-Co and FeCoP2(011)-bFe-Co exhibit a larger thermodynamic limiting potential than FeCoP2(101)-bCo-Co, suggesting their higher performances toward the ORR. The last step of HO* desorption as the rate-limiting step accounts for 3/4. The third step of transformation from O* to HO* as the most sluggish step accounts for 1/4. The work function, d-band center, Bader charge, and electronic localization function calculations are performed to reveal the HO adsorption nature. The present work provides fundamental insight into the effect of Fe doping into CoP, the determination of the catalyst surface and the key species adsorption nature to guide the rational design of high-performance materials.
Collapse
Affiliation(s)
- Mengru Huang
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| | - Chunyan Sun
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| | - Xiangrui Zhang
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| | - Peijie Wang
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| | - Shusheng Xu
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| | - Xue-Rong Shi
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai, P. R. China.
| |
Collapse
|
23
|
Nickel cobalt sulfide coated iron nickel selenide hierarchical nanosheet arrays toward high-performance supercapacitors. J Colloid Interface Sci 2022; 614:355-366. [PMID: 35114590 DOI: 10.1016/j.jcis.2022.01.126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/09/2022] [Accepted: 01/20/2022] [Indexed: 01/02/2023]
Abstract
Tailoring the electronic structure of nanomaterials by constructing core-shell heterostruture is a compelling strategy to design novel electrode materials with modified physiochemical properties for supercapacitors with improved performance. Herein, for the first time, we in situ fabricate iron nickel selenide (FeNiSe2)@nickel cobalt sulfide (Ni4.5Co4.5S8) core-shell nanosheet arrays on carbon cloth by an electrodeposition approach and a selenization treatment. This three-dimensional hierarchcial porous framework formed by plentiful interconnected nanosheets can expose numerous redox active sites with varied oxidation states and provide a conductive and porous skeleton for rapid ion/electrolyte ions transport. Benefiting from its modulated electronic structure and synergetic effect of metal-like FeNiSe2 and Ni4.5Co4.5S8, the as-synthesized FeNiSe2@Ni4.5Co4.5S8 electrode displays a large specific capacity of 236.9 mAh g-1 at 1 A g-1, remarkable rate capability with 80.6% capacity retention at 20 A g-1, and stable cyclic performance, which are superior to those of pure FeNiSe2 and Ni4.5Co4.5S8 electrodes. Besides, the assembled FeNiSe2@Ni4.5Co4.5S8//porous carbon hybrid supercapacitor device offers an energy density of 69.0 Wh kg-1 at 799.2 W kg-1, and exceptional cycling stability with 91.2% capacity retention after 10,000 cycles. This work offers a synthetic strategy to explore core-shell electrode materials with tunable architecture and morphology for high-performance energy storage devices.
Collapse
|
24
|
Wang JW, Ma YX, Kang XY, Yang HJ, Liu BL, Li SS, Zhang XD, Ran F. A novel moss-like 3D Ni-MOF for high performance supercapacitor electrode material. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Duan Z, Shi XR, Sun C, Lin W, Huang S, Zhang X, Huang M, Yang Z, Xu S. Interface engineered hollow Co3O4@CoNi2S4 nanostructure for high efficiency supercapacitor and hydrogen evolution. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Shao X, Xu S, Wang P, Wen Y, Sun X, Hong M, Wu K, Shi X. Carbon-incorporated bimetallic phosphides nanospheres derived from MOFs as superior electrocatalysts for hydrogen evolution. Dalton Trans 2022; 51:14517-14525. [DOI: 10.1039/d2dt02204d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparing low-cost and highly efficient electrocatalysts for hydrogen evolution reaction in a simple strategy is still facing challenges. In this work, we proposed a facile phosphating process to successfully transform...
Collapse
|
27
|
Ojha GP, Pant B, Acharya J, Park M. An electrochemically reduced ultra-high mass loading three-dimensional carbon nanofiber network: a high energy density symmetric supercapacitor with a reproducible and stable cell voltage of 2.0 V. NANOSCALE 2021; 13:19537-19548. [PMID: 34806747 DOI: 10.1039/d1nr05943b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Commercial supercapacitors need a high mass loading of more than 10 mg cm-2 and a high working potential window to resolve the low energy density concern. Herein, we have demonstrated a thick, ultrahigh mass loading (35 mg cm-2) and wide cell voltage electrochemically reduced layer-by-layer three-dimensional carbon nanofiber network (LBL 3D-CNF) electrode via electrospinning, sodium borohydride treatment, carbonization, and electro-reduction techniques. During the electro-reduction technique, Na+ is adsorbed onto the various defect sites of LBL 3D-CNFs, which properly inhibits the formation of the intermediate HER (hydrogen evolution reaction) product, leading to a wide cell voltage, whereas the LBL 3D-CNF network evokes an opportunity for storing a greater number of charges, resulting in excellent electrochemical performances. A symmetric supercapacitor with a reproducible and stable cell voltage of 2.0 V is constructed and demonstrated. The as-constructed device can deliver an areal energy output of 1922 μW h cm-2 at a power density of 3979 W kg-1 equal to a gravimetric energy density of 27 W h kg-1, and an outstanding cyclic durability of 97.4% after 20 000 GCD cycles. These record-breaking performances would make our device one of the most promising candidates from an industrial point of view.
Collapse
Affiliation(s)
- Gunendra Prasad Ojha
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea.
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea.
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea
| | - Jiwan Acharya
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea.
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea.
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Chonbuk, Jeollabuk-do 55338, Republic of Korea
| |
Collapse
|