1
|
Li P, Chen S, Meng Y, Wang C, Ni X. Simple Preparation and Bone Regeneration Effects of Poly(vinyl alcohol)-Resveratrol Self-Cross-Linked Hydrogels. ACS OMEGA 2024; 9:49043-49053. [PMID: 39713622 PMCID: PMC11656249 DOI: 10.1021/acsomega.4c02849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
Hydrogels have broad application prospects in bone repair. Pure poly(vinyl alcohol) (PVA) hydrogels have limited applications because of their low hardness and poor mechanical properties. This study found that resveratrol (Res) and PVA self-assembled and cross-linked through the formation of strong hydrogen bonds after freeze-thawing, forming an easily available PVA-Res supramolecular hydrogel through a green process. PVA-Res hydrogels with different Res wt %:10 wt % PVA ratios were prepared through freeze-thawing and designated as 0.4, 1.2, and 2.0 wt % PVA-Res hydrogels. Rheological studies demonstrated that the viscoelastic modulus of the PVA-Res hydrogels was significantly improved compared to pure PVA hydrogels. The viscoelastic modulus G' of 1.2% PVA-Res hydrogel was 2299 Pa, which was 8.5-fold that of the pure PVA hydrogel. We conducted a study on cell proliferation and osteogenic differentiation using MC3T3-E1 (preosteoblasts from newborn mouse calvaria). The results showed that the 0.4% PVA-Res hydrogel promotes alkaline phosphatase activity and mineral deposition. Real-time quantitative PCR (RT-qPCR) analysis demonstrated that the 0.4% PVA-Res hydrogel upregulated the expression of osteogenic differentiation-related genes (BMP-9, OCN, and ALP). Furthermore, RT-qPCR and flow cytometry demonstrated that the 0.4% PVA-Res hydrogel could effectively promote the M2 transformation and polarization of mouse mononuclear macrophage leukemia cells (Raw 264.7). The expression of related genes, such as Arg-1 and CD206, significantly increased, whereas that of M1 polarization-related genes, such as iNOS and TNF-α, significantly decreased. In summary, PVA-Res supramolecular hydrogels are potential materials for use in bone repair.
Collapse
Affiliation(s)
- Pengyin Li
- School
of Pharmacy, Changzhou University, Changzhou 213000, China
- Department
of Radiotherapy Oncology, Changzhou No.2 People’s Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu
Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou
Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Shaoqing Chen
- Department
of Radiotherapy Oncology, Changzhou No.2 People’s Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu
Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou
Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Yanyan Meng
- School
of Pharmacy, Changzhou University, Changzhou 213000, China
- Department
of Radiotherapy Oncology, Changzhou No.2 People’s Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu
Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou
Key Laboratory of Medical Physics, Changzhou 213003, China
| | - Cheli Wang
- School
of Pharmacy, Changzhou University, Changzhou 213000, China
| | - Xinye Ni
- Department
of Radiotherapy Oncology, Changzhou No.2 People’s Hospital, Nanjing Medical University, Changzhou 213003, China
- Jiangsu
Province Engineering Research Center of Medical Physics, Changzhou 213003, China
- Changzhou
Key Laboratory of Medical Physics, Changzhou 213003, China
| |
Collapse
|
2
|
Ding Z, Liang Z, Rong X, Fu X, Fan J, Lai Y, Cai Y, Huang C, Li L, Tang G, Luo Z, Zhou Z. Janus-Structured Microgel Barrier with Tissue Adhesive and Hemostatic Characteristics for Efficient Prevention of Postoperative Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403753. [PMID: 39340270 DOI: 10.1002/smll.202403753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Indexed: 09/30/2024]
Abstract
Postoperative adhesion (POA) is a common and serious complication following various types of surgery. Current physical barriers either have a short residence time at the surgical site with a low tissue attachment capacity or are prone to undesired adhesion formation owing to the double-sided adhesive property, which limits the POA prevention efficacy of the barriers. In this study, Janus-structured microgels (Janus-MGs) with asymmetric tissue adhesion capabilities are fabricated using a novel bio-friendly gas-shearing microfluidic platform. The anti-adhesive side of Janus-MGs, which consists of alginate, hyaluronic acid, and derivatives, endows the material with separation, lubrication, and adhesion prevention properties. The adhesive side provided Janus-MGs with tissue attachment and retention capability through catechol-based adhesion, thereby enhancing the in situ adhesion prevention effect. In addition, Janus-MGs significantly reduced blood loss and shortened the hemostatic time in rats, further reducing adhesion formation. Three commonly used rat POA models with different tissue structures and motion patterns are established in this study, namely peritoneal adhesion, intrauterine adhesion, and peritendinous adhesion models, and the results showed that Janus-MGs effectively prevented the occurrence of POA in all the models. The fabrication of Janus-MGs offers a reliable strategy and a promising paradigm for preventing POA following diverse surgical procedures.
Collapse
Affiliation(s)
- Zichuan Ding
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhimin Liang
- West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiao Rong
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoxue Fu
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaxuan Fan
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yahao Lai
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongrui Cai
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Huang
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lingli Li
- West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zeyu Luo
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongke Zhou
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Wang W, Liu Y, Cheng X, Yu Q, Hou S, Zhao J, Luo J. Fluorescence Enhancement of Nonemissive Monodeprotonated Luteolin in a Poly(vinyl alcohol) Film. J Phys Chem B 2024; 128:11328-11334. [PMID: 39484864 DOI: 10.1021/acs.jpcb.4c06452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Solid polymer matrixes can modulate the electronic states of embedded chromophores and have been widely used in flexible optoelectronic and optical materials. Luteolin is one of the most common natural flavonoids, and its neutral and monodeprotonated forms are nonemissive in aqueous solution induced by ultrafast excited-state proton transfer (ESPT) followed by nonradiative relaxation. In this study, we have incorporated luteolin into poly(vinyl alcohol) (PVA) films and studied their fluorescence behaviors. Neutral and one monodeprotonated luteolin coexist in the PVA film. Weak steady-state fluorescence of neutral luteolin peaking at about 440 nm is observed for the first time. In addition, the monodeprotonated luteolin in PVA film exhibits obvious fluorescence peaking at 500 nm, with a fluorescence quantum yield of as high as 0.4 and a fluorescence lifetime of as long as 2.4 ns. Time-dependent density functional theory calculations have determined that the ESPT of neutral luteolin is barrierless but that of monodeprotonated luteolin needs to surmount a barrier, explaining their distinct emission properties. These results indicate the modulation ability of the PVA film in both ground-state deprotonation and ESPT, broadening the application areas of the solid polymer matrix.
Collapse
Affiliation(s)
- Weili Wang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Yan Liu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Xiaolan Cheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Qin Yu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Siyu Hou
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Jie Zhao
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Jian Luo
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
4
|
Zhang Z, Yin C, Song X, Liu X, Zhong C, Zheng J, Ni Y, Shen R, Guo Y, Li X, Lin C, Zhang Y, Hu G. A self-fused peptide-loaded hydrogel with injectability and tissue-adhesiveness for preventing postoperative peritoneal adhesions. Mater Today Bio 2024; 28:101205. [PMID: 39221222 PMCID: PMC11364900 DOI: 10.1016/j.mtbio.2024.101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Peritoneal adhesions commonly occur following abdominal or pelvic surgery and can cause serious complications. Currently, physical barriers are the primary approach used in clinical practice to prevent adhesion, although their effectiveness is frequently inadequate. In this study, we developed an injectable peptide-loaded hydrogel with multiple functions, including self-fusion, tissue-adhesiveness, anti-inflammation, anti-cell adhesion and anti-angiogenesis. To assess the effectiveness of these hydrogels, which are stabilized by dynamic imine bonds and acetal connections, in preventing postoperative abdominal adhesions, we utilized both a rat abdominal adhesion model and a rat model simulating repeated-injury adhesions. In comparison to the commercially available HA hydrogel, as-prepared hydrogels exhibited significant reductions in inflammation, fibrosis, and angiogenesis, leading to an obvious decrease in peritoneal adhesions. Moreover, this peptide-loaded hydrogel demonstrated an ideal degradation time, maintaining an in vivo viability for about 10 days. We believe this peptide-loaded hydrogel presents a promising solution for the challenging clinical issue of postoperative abdominal adhesions.
Collapse
Affiliation(s)
- Zequn Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Chonglei Zhong
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Rujuan Shen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Yihang Guo
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| |
Collapse
|
5
|
Zhang T, Huang Y, Gong Y, Shi X, Xiao D, Ren L, Dai X, Zeng Z, Zhao C. A ROS-responsive and scavenging hydrogel for postoperative abdominal adhesion prevention. Acta Biomater 2024; 184:98-113. [PMID: 38914412 DOI: 10.1016/j.actbio.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Postoperative abdominal adhesion (PAA) widely occurs after abdominal surgery, which often produces severe complications. However, there were still no satisfactory anti-adhesive products including barriers and anti-adhesive agents. Herein, we developed a ROS-responsive and scavenging hydrogel barrier, termed AHBC/PSC, wherein the monomer AHBC was synthesized by phenylboronic acid (PBA)-modified hyaluronic acid (HA-PBA) further grafted with adipic dihydrazide (ADH) and PBA-based chlorogenic acid (CGA) via ROS-sensitive borate ester bond, and the other monomer PSC was constructed by polyvinyl alcohol (PVA) grafted with sulfated betaine (SB) and p-hydroxybenzaldehyde (CHO). Further, the double crosslinked AHBC/PSC hydrogel was successfully fabricated between AHBC and PSC via forming dynamic covalent acylhydrazone bonds and borate ester bonds. Results showed that AHBC/PSC hydrogel had in situ gelation behavior, satisfactory mechanical properties (storage modulus of about 1 kPa and loss factor Tan δ of about 0.5), suitable wet tissue adhesion strength of about 2.3 kPa on rat abdominal wall, and good biocompatibility, achieving an ideal physical barrier. Particularly, CGA could be responsively released from the hydrogel by breakage of borate ester bonds between CGA and PBA based on high reactive oxygen species (ROS) levels of damaged tissue and exhibited great ROS scavenging capability to regulate inflammation and promote the polarization of macrophages from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype. Moreover, the grafted SB as a zwitterionic group could reduce protein adsorption and fibroblast adhesion. Finally, the in vivo experiments revealed that AHBC/PSC hydrogel with good safety and in vivo retention behavior of about 2 weeks, effectively prevented PAA by regulating the inflammatory microenvironment and alleviating the fibrosis process. In brief, the versatile AHBC/PSC hydrogel would provide a more convenient and efficient approach for PAA prevention. STATEMENT OF SIGNIFICANCE: Postoperative abdominal adhesion (PAA) widely occurs after surgery and is often accompanied by severe complications. Excessive inflammation and oxidative stress are very crucial for PAA formation. This study provides a ROS-responsive and scavenging hydrogel with suitable mechanical properties, good biocompatibility and biodegradability, and resistance to protein and fibroblast. The antioxidant and anti-inflammatory active ingredient could be responsively released from the hydrogel via triggering by the high ROS levels in the postoperative microenvironment thereby regulating the inflammatory balance. Finally, the hydrogel would effectively regulate the development process of PAA thereby achieving non-adhesion wound healing.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yujun Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xianmin Shi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Danni Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Lingling Ren
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xiuling Dai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
6
|
Li Y, Wang Y, Ding Y, Fan X, Ye L, Pan Q, Zhang B, Li P, Luo K, Hu B, He B, Pu Y. A Double Network Composite Hydrogel with Self-Regulating Cu 2+/Luteolin Release and Mechanical Modulation for Enhanced Wound Healing. ACS NANO 2024; 18:17251-17266. [PMID: 38907727 DOI: 10.1021/acsnano.4c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Designing adaptive and smart hydrogel wound dressings to meet specific needs across different stages of wound healing is crucial. Here, we present a composite hydrogel, GSC/PBE@Lut, that offers self-regulating release of cupric ions and luteolin and modulates mechanical properties to promote chronic wound healing. The double network hydrogel, GSC, is fabricated through photo-cross-linking of gelatin methacrylate, followed by Cu2+-alginate coordination cross-linking. On one hand, GSC allows for rapid Cu2+ release to eliminate bacteria in the acidic pH environment during inflammation and reduces the hydrogel's mechanical strength to minimize tissue trauma during early dressing changes. On the other hand, GSC enables slow Cu2+ release during the proliferation stage, promoting angiogenesis and biocompatibility. Furthermore, the inclusion of pH- and reactive oxygen species (ROS)-responsive luteolin nanoparticles (PBE@Lut) in the hydrogel matrix allows for controlled release of luteolin, offering antioxidant and anti-inflammatory effects and promoting anti-inflammatory macrophage polarization. In a murine model of Staphylococcus aureus infected wounds, GSC/PBE@Lut demonstrates exceptional therapeutic benefits in antibacterial, anti-inflammatory, angiogenic, and tissue regeneration. Overall, our results suggest that smart hydrogels with controlled bioactive agent release and mechanical modulation present a promising solution for treating chronic wounds.
Collapse
Affiliation(s)
- Yue Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yunpeng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Liansong Ye
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Bowen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Comfort Care Dental Center, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Yahyazadeh R, Baradaran Rahimi V, Ahmad Mohajeri S, Iranshahy M, Hasanpour M, Askari VR. Intra-peritoneal lavage of Zingiber officinale rhizome and its active constituent gingerol impede inflammation, angiogenesis, and fibrosis following post-operative peritoneal adhesion in male rats. Saudi Pharm J 2024; 32:102092. [PMID: 38737808 PMCID: PMC11087237 DOI: 10.1016/j.jsps.2024.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Post-operative peritoneal adhesions (PA) are a common and important clinical problem. In this study, we focused on the ameliorative efficacy of ginger and gingerol compounds on surgical-induced peritoneal adhesion, and their strategies that disrupted the PA formation pathways to suppress their incidence. First, liquid chromatography-mass spectrometry (LC-MS) was established to separate and identify several chemical groups of ginger rhizome extract. In the next steps, male Wistar albino rats were randomly selected and divided into various groups, namely sham, control, ginger extract (0.6, 1.8, 5 %w/v), and gingerol (0.05, 0.1, 0.3, and 1 %w/v). Finally, we investigated the macroscopic parameters such as wound healing, body weight as well as spleen height and weight. In addition, visual peritoneal adhesion assessment was performed via Nair et al and Adhesion Scoring Scheme. Moreover, the microscopic parameters and biological assessment was performed via and immunoassays. The present findings revealed significant improvement in wound healing and reduction of the adhesion range, as Nair et al. and Adhesion Scoring Scheme scoring, in both the ginger and gingerol groups compared to the PA group (P < 0.05). Whereas, gingerol (0.3 % w/v) was able to increase the body weight in rats (P < 0.0001) at end stage of experiment. Also, inflammation, angiogenesis, and fibrosis were significantly decreased due to the downregulation of interleukin (IL)-6, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF), respectively, in the ginger and gingerol groups compared to the PA group (P < 0.05). In contrast, the levels of IL-10 were increased in the ginger and gingerol groups compared to the control group (P < 0.01). Our results proved that ginger rhizome and gingerol, as novel therapeutic compounds, could be used to prevent PA for their beneficial anti-inflammatory as well as anti-fibrosis properties in clinical trials. However, further clinical studies are required to approve the effectiveness of ginger and gingerol.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Tsuji Y. Molecular Understanding of the Distinction between Adhesive Failure and Cohesive Failure in Adhesive Bonds with Epoxy Resin Adhesives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7479-7491. [PMID: 38591184 DOI: 10.1021/acs.langmuir.3c04015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In the development of adhesives, an understanding of the fracture behavior of the bonded joints is inevitable. Two typical failure modes are known: adhesive failure and cohesive failure. However, a molecular understanding of the cohesive failure process is not as advanced as that of the adhesive failure process. In this study, research was developed to establish a molecular understanding of cohesive failure using the example of a system in which epoxy resin is bonded to a hydroxyl-terminated self-assembled monolayer (SAM) surface. Adhesive failure was modeled as a process in which an epoxy molecule is pulled away from the SAM surface. Cohesive failure, on the other hand, was modeled as the process of an epoxy molecule separating from another epoxy molecule on the SAM surface or breaking of a covalent bond within the epoxy resin. The results of the simulations based on the models described above showed that the results of the calculations using the model of cohesive failure based on the breakdown of intermolecular interactions agreed well with the experimental results in the literature. Therefore, it was suggested that the cohesive failure of epoxy resin adhesives is most likely due to the breakdown of intermolecular interactions between adhesive molecules. We further analyzed the interactions at the adhesive failure and cohesive failure interfaces and found that the interactions at the cohesive failure interface are mainly accounted for by dispersion forces, whereas the interactions at the adhesive failure interface involve not only dispersion forces but also various chemical interactions, including hydrogen bonds. The selectivity between adhesive failure and cohesive failure was explained by the fact that varying the functional group density affected the chemical interactions but not the dispersion forces.
Collapse
Affiliation(s)
- Yuta Tsuji
- Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
9
|
Ren Y, Li G, Li E, Deng K, Lian J, Gao Q, Wang H, Wang X, Wang Z, Shen T, Jiang Z, Li X, Qiu G. Luteolin blocks the ROS/PI3K/AKT pathway to inhibit mesothelial-mesenchymal transition and reduce abdominal adhesions. Eur J Pharmacol 2024; 964:176272. [PMID: 38110140 DOI: 10.1016/j.ejphar.2023.176272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Postoperative abdominal adhesion (PAA) is a common postoperative complication. Clinically, various methods have been used to prevent the occurrence of PAA, such as drugs and physiotherapy; however, no satisfactory results have been obtained. Luteolin (LUT) is a natural flavonoid that reduces inflammation and acts as an antioxidant. This research aimed to examine the impact and mechanism of LUT in reducing PAA. METHODS C57/BL6 mice were used in vivo experiments. PAA model was established using a brush friction method. Visual scoring and hematoxylin and eosin staining were used to score the severity of adhesions. Network pharmacology was used to infer potential targets and core pathways of LUT. Hydrogen peroxide (H2O2) was used to induce oxidative stress in vitro, while the reactive oxygen species (ROS) assay kit was used to evaluate oxidative stress levels. Western blotting, cell immunofluorescence, and multiple immunofluorescence assays were used to detect α-SMA, vimentin, E-cadherin, collagen I, or AKT phosphorylation level. Scratch assay was used to detect cell migration. RESULTS LUT reduced the degree of PAA in mice. It attenuated H2O2-induced ROS production and reversed mesothelial-mesenchymal transition (MMT) in HMrSV5 cells. Network pharmacology analysis showed that LUT likely exerted anti-adhesion activity by regulating the PI3K-Akt signaling pathway. Phosphorylated Akt levels were significantly reduced in LUT-treated HMrSV5 cells. LUT also significantly reduced the expression of vimentin and collagen I in adherent tissues and upregulated E-cadherin expression. CONCLUSION LUT blocks the ROS/PI3K/AKT pathway, thereby inhibiting MMT and reducing PAA. To this end, LUT has potential in PAA therapy.
Collapse
Affiliation(s)
- Yiwei Ren
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Gan Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Enmeng Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Kai Deng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Jie Lian
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qi Gao
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an Medical University, 710061 Xi'an, Shaanxi, China
| | - Huijun Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xingjie Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zijun Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Tianli Shen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhengdong Jiang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xuqi Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| | - Guanglin Qiu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
10
|
Zhuo S, Liang Y, Wu Z, Zhao X, Han Y, Guo B. Supramolecular hydrogels for wound repair and hemostasis. MATERIALS HORIZONS 2024; 11:37-101. [PMID: 38018225 DOI: 10.1039/d3mh01403g] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The unique network characteristics and stimuli responsiveness of supramolecular hydrogels have rendered them highly advantageous in the field of wound dressings, showcasing unprecedented potential. However, there are few reports on a comprehensive review of supramolecular hydrogel dressings for wound repair and hemostasis. This review first introduces the major cross-linking methods for supramolecular hydrogels, which includes hydrogen bonding, electrostatic interactions, hydrophobic interactions, host-guest interactions, metal ligand coordination and some other interactions. Then, we review the advanced materials reported in recent years and then summarize the basic principles of each cross-linking method. Next, we classify the network structures of supramolecular hydrogels before outlining their forming process and propose their potential future directions. Furthermore, we also discuss the raw materials, structural design principles, and material characteristics used to achieve the advanced functions of supramolecular hydrogels, such as antibacterial function, tissue adhesion, substance delivery, anti-inflammatory and antioxidant functions, cell behavior regulation, angiogenesis promotion, hemostasis and other innovative functions in recent years. Finally, the existing problems as well as future development directions of the cross-linking strategy, network design, and functions in wound repair and hemostasis of supramolecular hydrogels are discussed. This review is proposed to stimulate further exploration of supramolecular hydrogels on wound repair and hemostasis by researchers in the future.
Collapse
Affiliation(s)
- Shaowen Zhuo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhengying Wu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
11
|
Zou L, Hou Y, Zhang J, Chen M, Wu P, Feng C, Li Q, Xu X, Sun Z, Ma G. Degradable carrier-free spray hydrogel based on self-assembly of natural small molecule for prevention of postoperative adhesion. Mater Today Bio 2023; 22:100755. [PMID: 37593217 PMCID: PMC10430199 DOI: 10.1016/j.mtbio.2023.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/27/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
Postoperative peritoneal adhesion (PPA) is frequent and extremely dangerous complication after surgery. Different tactics have been developed to reduce it. However, creating a postoperative adhesion method that is multifunctional, biodegradable, biocompatible, low-toxic but highly effective, and therapeutically applicable is still a challenge. Herein, we have prepared a degradable spray glycyrrhetinic acid hydrogel (GAG) based on natural glycyrrhetinic acid (GA) by straightforward heating and cooling without the use of any additional chemical cross-linking agents to prevent postoperative adhesion. The resultant hydrogel was demonstrated to possess various superior anti-inflammatory activity, and multiple functions, such as excellent degradability and biocompatibility. Specifically, spraying characteristic and excellent antibacterial activities essentially eliminated secondary infections during the administration of drugs in surgical wounds. In the rat models, the carrier-free spray GAG could not only slow-release GA to inhibit inflammatory response, but also serve as physical anti-adhesion barrier to reduce collagen deposition and fibrosis. The sprayed GAG would shed a new light on the prevention of postoperative adhesion and broaden the application of the hydrogels based on natural products in biomedical fields.
Collapse
Affiliation(s)
- Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Jiawen Zhang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Peiying Wu
- School of Pharmacy; Guangxi Medical University, Nanning, 530021, China
| | - Changcun Feng
- School of Pharmacy; Guangxi Medical University, Nanning, 530021, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| |
Collapse
|
12
|
Song X, He S, Zheng J, Yang S, Li Q, Zhang Y. One-Step Construction of Tryptophan-Derived Small Molecule Hydrogels for Antibacterial Materials. Molecules 2023; 28:molecules28083334. [PMID: 37110568 PMCID: PMC10141015 DOI: 10.3390/molecules28083334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Amino acid-based hydrogels have received widespread attention because of their wide range of sources, biodegradability, and biocompatibility. Despite considerable progress, the development of such hydrogels has been limited by critical problems such as bacterial infection and complex preparation. Herein, by using the non-toxic gluconolactone (GDL) to adjust the pH of the solution to induce the rapid self-assembly of N-[(benzyloxy)carbonyl]-L-tryptophan (ZW) to form a three-dimensional (3D) gel network, we developed a stable and effective self-assembled small-molecule hydrogel. Characterization assays and molecular dynamics studies indicate that π-π stacking and hydrogen bonding are the main drivers of self-assembly between ZW molecules. In vitro experiments further confirmed this material's sustained release properties, low cytotoxicity, and excellent antibacterial activity, particularly against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. This study provides a different and innovative perspective for the further development of antibacterial materials based on amino acid derivatives.
Collapse
Affiliation(s)
- Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shunmei He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shutong Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qiang Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
13
|
Xiao W, Liu J, Lu Z, Zhang P, Wei H, Yu Y. Simultaneous Polymerization Acceleration and Mechanical Enhancement for Printing a Biomimetic PEDOT Adhesive by Coordinative and Orthogonal Ruthenium Photochemistry. ACS Macro Lett 2023; 12:433-439. [PMID: 36930947 DOI: 10.1021/acsmacrolett.2c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Conductive hydrogels are promising material candidates in fields ranging from flexible sensors and electronic skin applications to personalized medical monitoring. However, developing intrinsically conductive polymer hydrogels (ICPHs) with high mechanical properties and excellent printability is still challenging. Here, we introduce a simultaneous polymerization acceleration and mechanical enhancement (SPAME) strategy to construct PEDOT-based ICPHs via the rational design of coordinative and orthogonal ruthenium photochemistry (CORP). This orthogonal photochemistry triggers the oxidative polymerization of EDOT and the coupling of phenols within seconds under blue light irradiation. Benefiting from the bifunctional EDTA-Fe design, the photoreleased Fe(III) accelerated the EDOT polymerization and shortened the preparation time of ICPHs to a few seconds. At the same time, the addition of EDTA-Fe enhanced their mechanical properties, and both the critical strains and maximum stresses of the hydrogel doubled. Furthermore, the introduction of phenol residues in PAA-Ph significantly shortened the gelation time from several minutes to about 7 s. Thus, this fast and controllable CORP chemistry is compatible with standard printing techniques for engineering hydrogels for complex multifunctional structures for multifunctional bioelectronics and devices.
Collapse
Affiliation(s)
- Wenqing Xiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Jupen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Zhe Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Hongqiu Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
14
|
Cai J, Guo J, Wang S. Application of Polymer Hydrogels in the Prevention of Postoperative Adhesion: A Review. Gels 2023; 9:98. [PMID: 36826268 PMCID: PMC9957106 DOI: 10.3390/gels9020098] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Postoperative adhesion is a common post-surgery complication formed between the surface of the body cavity, ranging from a layer of connective tissue to a fibrous bridge containing blood vessels and nerve tissue. Despite achieving a lot of progress, the mechanisms of adhesion formation still need to be further studied. In addition, few current treatments are consistently effective in the prevention of postoperative adhesion. Hydrogel is a kind of water-expanding crosslinked hydrophilic polymer network generated by a simple reaction of one or more monomers. Due to the porous structure, hydrogels can load different drugs and control the drug release kinetics. Evidence from existing studies has confirmed the feasibility and superiority of using hydrogels to counter postoperative adhesions, primarily due to their outstanding antifouling ability. In this review, the current research status of hydrogels as anti-adhesion barriers is summarized, the character of hydrogels in the prevention of postoperative adhesion is briefly introduced, and future research directions are discussed.
Collapse
Affiliation(s)
- Jie Cai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
15
|
Miotke-Wasilczyk M, Kwela J, Lewkowicz A, Józefowicz M. Insight into the release mechanisms of diflunisal and salicylic acid from poly(vinyl alcohol). The role of hydrogen bonding interactions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121802. [PMID: 36070674 DOI: 10.1016/j.saa.2022.121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/04/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Diflunisal (5-(2,4-Difluorophenyl)salicylic acid, DIF), salicylic acid (SAL) derivative, which, on the one hand, is active pharmaceutical ingredient, on the other hand, belongs to the compounds exhibiting excited-state intramolecular proton transfer (ESIPT) behaviour was used to study the drug interactions with poly(vinyl alcohol) (PVA) matrix. For clarifying the nature and mechanisms of the drug-matrix interactions the salicylic acid (SAL) molecule was selected as the model active ESIPT compound, whose physicochemical properties in different media are well understood. The solute-solvent interactions (non-specific (dipole-dipole) versus specific (hydrogen bonding)) of DIF and SAL with different neat solvents were investigated using the steady-state spectroscopic technique. The solvent effect on spectral behaviours of DIF and SAL was analyzed based on the parametric solvent scales. In order to identify functional groups in the PVA matrices, determine the structure present in the studied molecule-PVA system and thus obtain information about the potential interactions between PVA and the studied molecules, the Raman spectra of pure PVA, SAL-PVA and DIF-PVA systems were measured. It has been shown that the molecular structure of the active substance entrapped in the polymer matrix affects the structure of the polymer, i.e., isotactic (SAL-PVA) versus syndiotactic (DIF-PVA) structure. The analysis of drug release kinetics revealed that the DIF is more strongly bound to PVA in comparison to SAL, which confirms conclusions drawn from the analysis of the Raman spectra i.e., the isotactic structure of SAL-PVA material results in a faster initial release process of weakly bound, located on the surface of the polymer SAL molecules.
Collapse
Affiliation(s)
- Marta Miotke-Wasilczyk
- Insitute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland.
| | - Jerzy Kwela
- Insitute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| | - Aneta Lewkowicz
- Insitute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| | - Marek Józefowicz
- Insitute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland.
| |
Collapse
|
16
|
Build in seconds: Small-molecule hydrogels of self-assembled tryptophan derivatives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Zheng J, Song X, Yang Z, Tan Y, Yin C, Yin J, Lu Y, Yang Y, Liu C, Yi L, Zhang Y. Self-assembling glycyrrhizic acid micellar hydrogels as encapsulant carriers for delivery of curcumin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Song X, Lu G, Wang J, Zheng J, Sui S, Li Q, Zhang Y. Molecular Dynamics-Assisted Design of High Temperature-Resistant Polyacrylamide/Poloxamer Interpenetrating Network Hydrogels. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165326. [PMID: 36014564 PMCID: PMC9414860 DOI: 10.3390/molecules27165326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
Polyacrylamide has promising applications in a wide variety of fields. However, conventional polyacrylamide is prone to hydrolysis and thermal degradation under high temperature conditions, resulting in a decrease in solution viscosity with increasing temperature, which limits its practical effect. Herein, combining molecular dynamics and practical experiments, we explored a facile and fast mixing strategy to enhance the thermal stability of polyacrylamide by adding common poloxamers to form the interpenetrating network hydrogel. The blending model of three synthetic polyacrylamides (cationic, anionic, and nonionic) and poloxamers was first established, and then the interaction process between them was simulated by all-atom molecular dynamics. In the results, it was found that the hydrogen bonding between the amide groups on all polymers and the oxygen-containing groups (ether and hydroxyl groups) on poloxamers is very strong, which may be the key to improve the high temperature resistance of the hydrogel. Subsequent rheological tests also showed that poloxamers can indeed significantly improve the stability and viscosity of nonionic polyacrylamide containing only amide groups at high temperatures and can maintain a high viscosity of 3550 mPa·S at 80 °C. Transmission electron microscopy further showed that the nonionic polyacrylamide/poloxamer mixture further formed an interpenetrating network structure. In addition, the Fourier transform infrared test also proved the existence of strong hydrogen bonding between the two polymers. This work provides a useful idea for improving the properties of polyacrylamide, especially for the design of high temperature materials for physical blending.
Collapse
Affiliation(s)
- Xianwen Song
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanism and Effective Development, Beijing 100083, China
- Research and Development Center for the Sustainable Development of Continental Sandstone Mature Oilfield by National Energy Administration, Beijing 100083, China
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Gang Lu
- Research and Development Center for the Sustainable Development of Continental Sandstone Mature Oilfield by National Energy Administration, Beijing 100083, China
| | - Jingxing Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shanying Sui
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qiang Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Correspondence:
| |
Collapse
|
19
|
Zeng H, Liu X, Zhang Z, Song X, Quan J, Zheng J, Shen Z, Ni Y, Liu C, Zhang Y, Hu G. Self-healing, injectable hydrogel based on dual dynamic covalent cross-linking against postoperative abdominal cavity adhesion. Acta Biomater 2022; 151:210-222. [PMID: 35995405 DOI: 10.1016/j.actbio.2022.08.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/01/2022]
Abstract
Clinically, increasing the peritoneal barrier is an effective adjunct to reducing postoperative peritoneal adhesion. This study presents a facile template for preparing a supramolecular hybrid hydrogel through dynamic covalent cross-linking between carboxymethyl chitosan (CMCS), 2-formylphenylboronic acid (2-FPBA), and quercetin (Que). The as-prepared complex CMCS/2-FPBA/Que (CFQ) hydrogel exhibited favorable antibacterial, anti-inflammatory, and antioxidant effects. A L929 cytotoxicity evaluation confirmed the favorable cytocompatibility of the CFQ hydrogel. The postoperative anti-adhesion ability of the CFQ hydrogel was further evaluated in rats with lateral wall defects and cecal abrasions. Compared with control groups, the tissue adhesion rate was significantly reduced by increasing the Que concentration in all the hydrogel-treated groups. Additionally, the sustained-release time of the C3F0.8Q0.08 hydrogel can exceed 14 days, which is highly desirable for clinical wound treatment. STATEMENT OF SIGNIFICANCE: Postoperative adhesions are a very common postoperative complication that seriously affects the quality of life of patients. The currently commonly used methods for preventing adhesion mainly use degradable barrier materials for physical separation. In this study, we prepared a dual dynamic covalently cross-linked CFQ hydrogel, which is not only degradable and injectable, but also has multiple properties such as antibacterial, antioxidant and anti-inflammatory, which can effectively prevent postoperative adhesion and promote wound healing.
Collapse
Affiliation(s)
- Huihui Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan 410013, P. R. China
| | - Zequn Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan 410013, P. R. China
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jun Quan
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan 410013, P. R. China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaolong Shen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan 410013, P. R. China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Tongzipo Road, Changsha, Hunan 410013, P. R. China.
| |
Collapse
|