1
|
Xiong W, Huang Y, Zhao C, Luo Q, Zhao L, Yu F, Cheng Z. Engineering ultrasmall gold nanoclusters: tailored optical modulation for phototherapeutic and multimodal biomedical applications. Chem Commun (Camb) 2025; 61:8120-8136. [PMID: 40391500 DOI: 10.1039/d5cc02027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Ultrasmall gold nanoclusters (Au NCs) with core sizes below 2 nm exhibit distinctive physicochemical properties and hold remarkable promise in a variety of biomedical applications. Through precise synthesis and surface engineering, Au NCs can be endowed with high quantum yields, excellent stability, and favorable biocompatibility. Recent studies have demonstrated the versatility of Au NCs in imaging modalities-ranging from fluorescence and Raman to photoacoustics-as well as in light-driven therapeutics such as photodynamic therapy (PDT) and photothermal therapy (PTT). This review provides an overview of Au NC design strategies, highlighting ligand-assisted synthesis and supramolecular self-assembly for optimizing optical features and biological performance. Representative biomedical applications in optical imaging, biosensing, and phototherapy are summarized to illustrate the multifaceted benefits of Au NCs in disease diagnosis and treatment. Finally, challenges related to large-scale production, long-term biosafety, and clinical translation are discussed, along with future perspectives on leveraging Au NCs for next-generation theranostic platforms.
Collapse
Affiliation(s)
- Wei Xiong
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| | - Yibao Huang
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| | - Chenxiao Zhao
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| | - Quan Luo
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Linlu Zhao
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| | - Fabiao Yu
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| | - Ziyi Cheng
- College of Emergency and Trauma, Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, College of Pharmacy, The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
2
|
Huo Q, Meng T, Lu X, Li D. Multiphoton Excited Fluorescence Imaging over Metal-Organic Frameworks. Chembiochem 2025; 26:e202400782. [PMID: 39676052 DOI: 10.1002/cbic.202400782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/17/2024]
Abstract
Multiphoton excited fluorescence (MPEF) imaging has emerged as a powerful tool for visualizing biological processes with high spatial and temporal resolution. Metal-organic frameworks (MOFs), a class of porous materials composed of metal ions or clusters coordinated with organic ligands, have recently gained attention for their unique optical properties and potential applications in MPEF imaging. This review provides a comprehensive overview of the design, synthesis, and applications of multiphoton excited fluorescence imaging using MOFs. We discuss the principles behind the fluorescence behavior of MOFs, explore strategies to enhance their photophysical properties, and showcase their applications in bioimaging. Additionally, we address the current challenges and future prospects in this rapidly evolving field, highlighting the potential of multiphoton excited fluorescence imaging by MOFs for advancing our understanding of complex biological processes.
Collapse
Affiliation(s)
- Qingwei Huo
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Tong Meng
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xin Lu
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
3
|
Huang F, Jiang Y, Wu Q, Zheng C, Huang S, Yang H, Xiang G, Zheng L. A one-pot loop-mediated isothermal amplification platform using fluorescent gold nanoclusters for rapid and naked-eye pathogen detection. Food Chem 2024; 460:140573. [PMID: 39053273 DOI: 10.1016/j.foodchem.2024.140573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Loop-mediated isothermal amplification (LAMP) is a rapid and sensitive nucleic acid testing method for pathogen detection, yet the absence of a straightforward readout strategy remains challenging. We've successfully designed polyethyleneimine-stabilized gold nanoclusters (PEI-AuNCs) as a cationic AuNCs indicator tailored for distinguishing LAMP results, enabling direct visual inspection under UV light. Positive LAMP reactions with PEI-AuNCs, in combination with magnesium pyrophosphate crystals, yield red-fluorescent bulk precipitates visible to the naked eye. To address contamination concerns, we introduced a one-pot reaction by incorporating AuNCs into the lid recess. This one-pot LAMP assay demonstrates exceptional detection capability, identifying Salmonella enterica at concentrations as low as 101 CFU/mL within approximately 50 min, excluding nucleic acid extraction. The platform's versatility, achieved through customizable primers, positions it as a promising molecular diagnostic tool for rapid and visual pathogen detection across scientific disciplines.
Collapse
Affiliation(s)
- Fuyuan Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yayun Jiang
- Department of Clinical Laboratory, People's Hospital of Deyang City, Deyang, China
| | - Qiaoli Wu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chaochuan Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shen Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huan Yang
- Wenzhou Lucheng District Center for Disease Control and Prevention, China.
| | - Guangxin Xiang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Laibao Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
4
|
Sharma S, Yadav A, Kaushik K, Salam A, Nandi CK. Assessing the overflowing pile-up effect on the photoluminescence lifetime of nanomaterials. NANOSCALE 2024; 16:16958-16966. [PMID: 39211990 DOI: 10.1039/d4nr01916d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The tunable complex emissive states with nanosecond to microsecond lifetimes in nanomaterials, arise due to their structural heterogeneity, enabling them with a wide range of advanced optoelectronic applications. However, understanding the complex photoluminescence lifetime in these nanomaterials is critically challenged by the overflowing pile-up effect, which occurs due to the high repetition rate of the light source in the time-correlated single photon counting (TCSPC) technique. Here, we provide a quantitative lifetime analysis, especially in metal nanoclusters, metal complexes, and semiconductor quantum dots, which suggests that the same experimental parameters can mislead the lifetime data interpretation for long-ranged luminescent nanomaterials. We demonstrate that the overflowing pile-up effect could be fatal while analyzing the excited state lifetime. Furthermore, we provide the optimized parameters that could be used to get the actual lifetime data of samples. We hope that our findings will be crucial in obtaining the error-free and accurate excited state dynamics of these long-range lifetime nanomaterials.
Collapse
Affiliation(s)
- Shagun Sharma
- School of Chemical Sciences, Indian Institute of Technology (I.I.T.) Mandi, H.P-175075, India.
| | - Aditya Yadav
- School of Chemical Sciences, Indian Institute of Technology (I.I.T.) Mandi, H.P-175075, India.
| | - Kush Kaushik
- School of Chemical Sciences, Indian Institute of Technology (I.I.T.) Mandi, H.P-175075, India.
| | - Abdul Salam
- School of Chemical Sciences, Indian Institute of Technology (I.I.T.) Mandi, H.P-175075, India.
| | - Chayan Kanti Nandi
- School of Chemical Sciences, Indian Institute of Technology (I.I.T.) Mandi, H.P-175075, India.
| |
Collapse
|
5
|
Dong X, Tian Y, Ai F, Wei D, Yin H, Zhu N, Zhang Z, Zhao H. Gold Nanocluster-Based Self-Assembly Fluorescence Microbeads for Sensor Array Discrimination of Multicomponent Metal Ions. Inorg Chem 2024; 63:16264-16273. [PMID: 39158204 DOI: 10.1021/acs.inorgchem.4c02161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Benefiting from easy visualization and simultaneous detection of multiple targets, fluorescence microbeads are commonly used as fluorescence-sensing elements to detect pollutants in the environment. However, the application of fluorescence microbead-based sensor arrays is still limited because fluorescence dyes always suffer from self-quenching, photobleaching, and spectral overlap. Herein, three kinds of gold nanoclusters (Au NCs) were assembled with polystyrene microspheres (PS NPs) by electrostatic interaction to prepare fluorescence microbeads (PS-Au NCs), developing a sensor array for the simultaneous analysis of multiple metal ions. In this work, different PS-Au NCs showed an enhancing or quenching fluorescence response to various metal ions, owing to distinct binding capacities. Combined with the recognition algorithm from linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA), this sensor assay could realize single-component and multicomponent qualitative detection for 8 kinds of heavy metal ions (HMIs) including Cu2+, Co2+, Pb2+, Hg2+, and Ce3+. Particularly, the large surface area of PS NPs could provide a direct reaction microenvironment to improve the efficiency of the detection process. Meanwhile, the fluorescence property of Au NCs could also be enhanced by a partially effective aggregation-induced emission (AIE) effect to give better fluorescence signal output. Under optimal conditions, 8 kinds of heavy metals and their multicomponent mixtures could be identified at concentrations as low as 0.62 μM. Meanwhile, the analytical performance of this sensor assay in water samples was also verified, meeting the requirement of actual analysis. This study provides a great potential and practical example of single-batch, multicomponent identification for HMIs.
Collapse
Affiliation(s)
- Xing Dong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yixing Tian
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengxiang Ai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dali Wei
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongyi Yin
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Zhao
- Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| |
Collapse
|
6
|
Fang C, Xu C, Zhang W, Zhou M, Tan D, Qian L, Hu D, Jin S, Zhu M. Dual-quartet phosphorescent emission in the open-shell M 1Ag 13 (M = Pt, Pd) nanoclusters. Nat Commun 2024; 15:5962. [PMID: 39013901 PMCID: PMC11252300 DOI: 10.1038/s41467-024-50289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024] Open
Abstract
Dual emission (DE) in nanoclusters (NCs) is considerably significant in the research and application of ratiometric sensing, bioimaging, and novel optoelectronic devices. Exploring the DE mechanism in open-shell NCs with doublet or quartet emissions remains challenging because synthesizing open-shell NCs is difficult due to their inherent instability. Here, we synthesize two dual-emissive M1Ag13(PFBT)6(TPP)7 (M = Pt, Pd; PFBT = pentafluorobenzenethiol; TPP = triphenylphosphine) NCs with a 7-electron open-shell configuration to reveal the DE mechanism. Both NCs comprise a crown-like M1Ag11 kernel with Pt or Pd in the center surrounded by five PPh3 ligands and two Ag(SR)3(PPh3) motifs. The combined experimental and theoretical studies revealed the origin of DE in Pt1Ag13 and Pd1Ag13. Specifically, the high-energy visible emission and the low-energy near-infrared emission arise from two distinct quartet excited states: the core-shell charge transfer and core-based states, respectively. Moreover, PFBT ligands are found to play an important role in the existence of DE, as its low-lying π* levels result in energetically accessible core-shell transitions. This novel report on the dual-quartet phosphorescent emission in NCs with an open-shell electronic configuration advances insights into the origin of dual-emissive NCs and promotes their potential application in magnetoluminescence and novel optoelectronic devices.
Collapse
Affiliation(s)
- Cao Fang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Chang Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Wei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Meng Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Dong Tan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Lixia Qian
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Daqiao Hu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China.
| | - Shan Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China.
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
7
|
Qiao L, Fu Z, Li B, Liu Z, Cai L, Pan Y, Ran X, He Y, Wu W, Chi Z, Liu R, Guo L. Heteroatom Doping Promoted Ultrabright and Ultrastable Photoluminescence of Water-Soluble Au/Ag Nanoclusters for Visual and Efficient Drug Delivery to Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34510-34523. [PMID: 38946393 DOI: 10.1021/acsami.4c04303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Photoluminescence (PL) metal nanoclusters (NCs) have attracted extensive attention due to their excellent physicochemical properties, good biocompatibility, and broad application prospects. However, developing water-soluble PL metal NCs with a high quantum yield (QY) and high stability for visual drug delivery remains a great challenge. Herein, we have synthesized ultrabright l-Arg-ATT-Au/Ag NCs (Au/Ag NCs) with a PL QY as high as 73% and excellent photostability by heteroatom doping and surface rigidization in aqueous solution. The as-prepared Au/Ag NCs can maintain a high QY of over 61% in a wide pH range and various ionic environments as well as a respectable resistance to photobleaching. The results from structure characterization and steady-state and time-resolved spectroscopic analysis reveal that Ag doping into Au NCs not only effectively modifies the electronic structure and photostability but also significantly regulates the interfacial dynamics of the excited states and enhances the PL QY of Au/Ag NCs. Studies in vitro indicate Au/Ag NCs have a high loading capacity and pH-triggered release ability of doxorubicin (DOX) that can be visualized from the quenching and recovery of PL intensity and lifetime. Imaging-guided experiments in cancer cells show that DOX of Au/Ag NCs-DOX agents can be efficiently delivered and released in the nucleus with preferential accumulation in the nucleolus, facilitating deep insight into the drug action sites and pharmacological mechanisms. Moreover, the evaluation of anticancer activity in vivo reveals an outstanding suppression rate of 90.2% for mice tumors. These findings demonstrate Au/Ag NCs to be a superior platform for bioimaging and visual drug delivery in biomedical applications.
Collapse
Affiliation(s)
- Lulu Qiao
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Zhijie Fu
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Bingbing Li
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Zhanpeng Liu
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Lin Cai
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Yatao Pan
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Xia Ran
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Yulu He
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Wenqiang Wu
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Zhen Chi
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Renming Liu
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Lijun Guo
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| |
Collapse
|
8
|
Yang L, Hou P, Wei J, Li B, Gao A, Yuan Z. Recent Advances in Gold Nanocluster-Based Biosensing and Therapy: A Review. Molecules 2024; 29:1574. [PMID: 38611853 PMCID: PMC11013830 DOI: 10.3390/molecules29071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Gold nanoclusters (Au NCs) with bright emission and unique chemical reactivity characters have been widely applied for optical sensing and imaging. With a combination of surface modifications, effective therapeutic treatments of tumors are realized. In this review, we summarize the recently adopted biosensing and therapy events based on Au NCs. Homogeneous and fluorometric biosensing systems toward various targets, including ions, small molecules, reactive oxygen species, biomacromolecules, cancer cells, and bacteria, in vitro and in vivo, are presented by turn-off, turn-on, and ratiometric tactics. The therapy applications are concluded in three aspects: photodynamic therapy, photothermal therapy, and as a drug carrier. The basic mechanisms and performances of these systems are introduced. Finally, this review highlights the challenges and future trend of Au NC-based biosensing and therapy systems.
Collapse
Affiliation(s)
| | | | | | | | - Aijun Gao
- College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqin Yuan
- College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Bélteki R, Kuklis L, Gombár G, Ungor D, Csapó E. The Role of the Amino Acid Molecular Characteristics on the Formation of Fluorescent Gold- and Silver-Based Nanoclusters. Chemistry 2023; 29:e202300720. [PMID: 37258456 DOI: 10.1002/chem.202300720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
Role of amino acids like L-phenylalanine (Phe), L-glutamine (Gln) and L-arginine (Arg) is described and interpreted in terms of their potential for preparation of fluorescent molecular-like gold and silver nanostructures. We are among the first to demonstrate the effect of syntheses conditions as well as the molecular characteristics of Phe, Gln and Arg amino acids on the structure of the formed products. Comprehensive optical characterizations (lifetime, quantum yield (QY%)) of the blue-emitting products were also carried out. It was confirmed that for all Au-containing samples and for Gln-Ag system the characteristic fluorescence originates from few-atomic metallic nanoclusters (NCs) where the reduction of metal ions was promoted by citrate in some cases. Relatively high QY% (∼18 %) was obtained for Arg-stabilized Au NCs due to the existence of an electrostatic interaction between the electron rich, positively charged guanidium side chain of Arg and the negatively charged carboxylate group of citrate on the metallic surface. Size and structural analysis of the products were evaluated by infrared measurements and dynamic light scattering techniques.
Collapse
Affiliation(s)
- Rita Bélteki
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. sqr. 1, 6720, Szeged, Hungary
| | - Loretta Kuklis
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. sqr. 1, 6720, Szeged, Hungary
| | - Gyöngyi Gombár
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. sqr. 1, 6720, Szeged, Hungary
| | - Ditta Ungor
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. sqr. 1, 6720, Szeged, Hungary
| | - Edit Csapó
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, University of Szeged, Rerrich B. sqr. 1, 6720, Szeged, Hungary
- Interdisciplinary Excellence Center Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich B. sqr. 1, H-6720, Szeged, Hungary
| |
Collapse
|
10
|
Tian Y, Zheng W, Zhang X, Wang Y, Xiao Y, Yao D, Zhang H. Triple Ligand Engineered Gold Nanoclusters with Enhanced Fluorescence and Device Compatibility for Efficient Electroluminescence Light-Emitting Diodes. NANO LETTERS 2023; 23:4423-4430. [PMID: 37129890 DOI: 10.1021/acs.nanolett.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Gold nanoclusters (Au NCs) are potential emitters for electroluminescent light-emitting diodes (EL-LEDs) but restricted by the limited photoluminescence quantum yield (PLQY) and poor device compatibility. Herein, triple ligand engineered Au NCs enable the fabrication of Au NC-based LEDs with improved EL efficiency. Rigidified triple ligand shells greatly reduce the nonradiative transition and thus increase the PLQY of Au NCs from 2.1 to 73.4%. Most importantly, this strategy significantly improves the compatibility between Au NCs and charge transport materials in EL-LED fabrication. As a result, the EL-LEDs reach a maximum brightness of 1104 cd/m2 and an external quantum efficiency of 5.1%, which is the highest recorded for any reported Au NC-based EL-LEDs.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Weijia Zheng
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Xiaoyu Zhang
- School of Materials Science & Engineering, Jilin University, Changchun 130012, P. R. China
| | - Yinghui Wang
- College of Physics, Jilin University, Changchun 130012, P. R. China
| | - Yanwei Xiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
11
|
Pniakowska A, Samoć M, Olesiak-Bańska J. Strong fluorescence-detected two-photon circular dichroism of chiral gold nanoclusters. NANOSCALE 2023; 15:8597-8602. [PMID: 37186146 DOI: 10.1039/d3nr01091k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Progress in syntheses and understanding of the intriguing properties of chiral noble metal nanoclusters sparks interest to extend investigations of their chiroptical response to the nonlinear optics regime. We present a quantitative determination of two-photon circular dichroism of chiral gold nanoclusters with ATT and L- or D-Arg ligands (ATT = 6-aza-2-thiotymine and Arg = arginine). Introduction of arginine ligands enables the formation of two enantiomers of the nanoclusters, with strong chiroptical effects in both linear and nonlinear regime. We present two-photon absorption and luminescent properties measured in a wide range of wavelengths, with the two-photon absorption cross section reaching 1743 GM and two-photon brightness ∼1102 GM at 825 nm. We report strong, 245-fold enhancement of the two-photon circular dichroism of nanoclusters with respect to the one-photon absorption counterpart - the dissymmetry factor. The presence of multiple advantages of nanoclusters: high fluorescence quantum yield, strong nonlinear optical properties and well-controlled chirality is a powerful combination for applications of such clusters in multiphoton microscopy.
Collapse
Affiliation(s)
- Anna Pniakowska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Marek Samoć
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
12
|
Li W, Xingzhuo zhou, Yan W, Wang R, Yang Z, Hu Y, Liu Y, Jia Z, Li Y. Lysozyme-encapsulated gold nanoclusters for ultrasensitive detection of folic acid and in vivo imaging. Talanta 2022; 251:123789. [DOI: 10.1016/j.talanta.2022.123789] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
|
13
|
Li B, Lu X, Tian Y, Li D. Embedding Multiphoton Active Units within Metal–Organic Frameworks for Turning on High‐Order Multiphoton Excited Fluorescence for Bioimaging. Angew Chem Int Ed Engl 2022; 61:e202206755. [DOI: 10.1002/anie.202206755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 12/27/2022]
Affiliation(s)
- Bo Li
- Institutes of Physical Science and Information Technology Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education Anhui University Hefei 230601 P. R. China
| | - Xin Lu
- Institutes of Physical Science and Information Technology Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education Anhui University Hefei 230601 P. R. China
| | - Yupeng Tian
- Institutes of Physical Science and Information Technology Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education Anhui University Hefei 230601 P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education Anhui University Hefei 230601 P. R. China
| |
Collapse
|
14
|
Tang Z, Chen F, Wang D, Xiong D, Yan S, Liu S, Tang H. Fabrication of avidin-stabilized gold nanoclusters with dual emissions and their application in biosensing. J Nanobiotechnology 2022; 20:306. [PMID: 35761380 PMCID: PMC9235210 DOI: 10.1186/s12951-022-01512-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
Protein-stabilized gold nanoclusters (Prot-Au NCs) have been widely used in biosensing and cell imaging owing to their excellent optical properties and low biotoxicity. However, several Prot-Au NCs reported in the literature do not retain the biological role of the protein, which greatly limits their ability to directly detect biomarkers. This study demonstrated for the first time the successful synthesis of dual-function avidin-stabilized gold nanoclusters (Av–Au NCs) using a one-pot method. The resulting Av–Au NCs exhibited intense blue and red emissions under 374 nm excitation. Furthermore, the Av–Au NCs retained the native functionality of avidin to bind to biotin. When DNA strands modified with biotin at both ends (i.e., linker chains) were mixed with Av–Au NCs, large polymers were formed, indicating that Av–Au NCs could achieve fluorescence signal amplification by interacting with biotin. Taking advantage of the aforementioned properties, we constructed a novel enzyme-free fluorescent biosensor based on the Av–Au NCs-biotin system to detect DNA. The designed fluorescent biosensor could detect target DNA down to 0.043 nM, with a wide line range from 0.2 nM to 20 µM. Thus, these dual-functional Av–Au NCs were shown to be an excellent fluorescent material for biosensing. Avidin-stabilized gold nanoclusters (Av–Au NCs) were synthesized for the first time by a water-bath method. The synthesized Av–Au NCs not only exhibited intense blue and red emissions under 374 nm excitation, but also retained the native functionality of avidin to bind to biotin. The fluorescent signal amplification system constructed by the interaction of Av–Au NCs with biotin was successfully applied to detect target DNA in vitro.
Collapse
Affiliation(s)
- Zhenrong Tang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Fengjiao Chen
- Guangshan County People's Hospital, Xinyang, 465450, Henan, China
| | - Dan Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, China
| | - Dongmei Xiong
- Nursing School of Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Shaoying Yan
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengchun Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China.
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, 1 Yi Xue Yuan Road, Chongqing, 400016, China.
| |
Collapse
|
15
|
Li B, Lu X, Tian Y, Li D. Embedding Multiphoton Active Units within Metal‐Organic Frameworks for Turning on High‐Order Multiphoton Excited Fluorescence for Bioimaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bo Li
- Anhui University Institutes of Physical Science and Information Technology CHINA
| | - Xin Lu
- Anhui University Institutes of Physical Science and Information Technology CHINA
| | - Yupeng Tian
- Anhui University Institutes of Physical Science and Information Technology CHINA
| | - Dandan Li
- Anhui University Institutes of physics science and information technology jiulong road 230601 Hefei CHINA
| |
Collapse
|
16
|
Ostruszka R, Zoppellaro G, Tomanec O, Pinkas D, Filimonenko V, Šišková K. Evidence of Au(II) and Au(0) States in Bovine Serum Albumin-Au Nanoclusters Revealed by CW-EPR/LEPR and Peculiarities in HR-TEM/STEM Imaging. NANOMATERIALS 2022; 12:nano12091425. [PMID: 35564133 PMCID: PMC9105226 DOI: 10.3390/nano12091425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023]
Abstract
Bovine serum albumin-embedded Au nanoclusters (BSA-AuNCs) are thoroughly probed by continuous wave electron paramagnetic resonance (CW-EPR), light-induced EPR (LEPR), and sequences of microscopic investigations performed via high-resolution transmission electron microscopy (HR-TEM), scanning transmission electron microscopy (STEM), and energy dispersive X-ray analysis (EDS). To the best of our knowledge, this is the first report analyzing the BSA-AuNCs by CW-EPR/LEPR technique. Besides the presence of Au(0) and Au(I) oxidation states in BSA-AuNCs, the authors observe a significant amount of Au(II), which may result from a disproportionation event occurring within NCs: 2Au(I) → Au(II) + Au(0). Based on the LEPR experiments, and by comparing the behavior of BSA versus BSA-AuNCs under UV light irradiation (at 325 nm) during light off-on-off cycles, any energy and/or charge transfer event occurring between BSA and AuNCs during photoexcitation can be excluded. According to CW-EPR results, the Au nano assemblies within BSA-AuNCs are estimated to contain 6–8 Au units per fluorescent cluster. Direct observation of BSA-AuNCs by STEM and HR-TEM techniques confirms the presence of such diameters of gold nanoclusters in BSA-AuNCs. Moreover, in situ formation and migration of Au nanostructures are observed and evidenced after application of either a focused electron beam from HR-TEM, or an X-ray from EDS experiments.
Collapse
Affiliation(s)
- Radek Ostruszka
- Department of Experimental Physics, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
- Correspondence: (G.Z.); (K.Š.)
| | - Ondřej Tomanec
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
| | - Dominik Pinkas
- Institute of Molecular Genetics of the Czech Academy of Sciences, Microscopy Centre, Electron Microscopy Core Facility, Vídeňská 1083, 14220 Prague, Czech Republic; (D.P.); (V.F.)
| | - Vlada Filimonenko
- Institute of Molecular Genetics of the Czech Academy of Sciences, Microscopy Centre, Electron Microscopy Core Facility, Vídeňská 1083, 14220 Prague, Czech Republic; (D.P.); (V.F.)
| | - Karolína Šišková
- Department of Experimental Physics, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
- Correspondence: (G.Z.); (K.Š.)
| |
Collapse
|