1
|
Qian F, Zhang D, Huang Y, Du J. Development of the cobalt-modified boron-doped metal‑nitrogen‑carbon nanoparticles (co-BCN) for the chemiluminescent determination of the total antioxidant capacity of beverages and fruits. Food Chem 2025; 485:144517. [PMID: 40311585 DOI: 10.1016/j.foodchem.2025.144517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
The development of novel detection methods is essential for total antioxidant capacity (TAC) assay in the quality of foods and dietary pharmaceuticals. Herein, a series of cobalt-modified boron-doped metal‑nitrogen‑carbon nanoparticles (Co-BCN) were prepared through high-temperature pyrolysis of the precursors. The Co-BCN shows an outstanding activity of oxidase mimics, and can activate dissolved oxygen to generate a large amount of reactive oxygen species (ROS). These ROS oxidize luminol anions rapidly and emits intense chemiluminescent (CL) radiation. The antioxidants, ascorbic acid, glutathione and cysteine can scavenge the generated ROS, thus sharply reducing the CL signal. The reduction in the CL signals show good linear relationships in the concentration range of 0.1-1.0 μmol·L-1 ascorbic acid, 1.0-10.0 μmol·L-1 glutathione, and 10.0-80.0 μmol·L-1 cysteine, respectively. The method was employed for the TAC determination in eight commercially available fruits and beverages, and the results show good agreement with those of the CUPRAC method.
Collapse
Affiliation(s)
- Fangying Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Deru Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yujie Huang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Jianxiu Du
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| |
Collapse
|
2
|
Wu G, Liu T, Lao Z, Cheng Y, Wang T, Mao J, Zhang H, Liu E, Shi C, Zhou G, He C, Hu W, Zhao N, Wu N, Chen B. Optimizing s-p Orbital Overlap Between Sodium Polysulfides and Single-Atom Indium Catalyst for Efficient Sulfur Redox Reaction. Angew Chem Int Ed Engl 2025; 64:e202422208. [PMID: 39676177 DOI: 10.1002/anie.202422208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
P-block metal carbon-supported single-atom catalysts (C-SACs) have emerged as a promising candidate for high-performance room-temperature sodium-sulfur (RT Na-S) batteries, due to their high atom utilization and unique electronic structure. However, the ambiguous electronic-level understanding of Na-dominant s-p hybridization between sodium polysulfides (NaPSs) and p-block C-SACs limits the precise control of coordination environment tuning and electro-catalytic activity manipulation. Here, s-p orbital overlap degree (OOD) between the s orbitals of Na in NaPSs and the p orbitals of p-block C-SACs is proposed as a descriptor for sulfur reduction reaction (SRR) and sulfur oxidation reaction (SOR). Compared to NG and NG-supported InN4 (NG-InN4) SACs, the nitrogen-doped graphene-supported InN5 (NG-InN5) SACs show the largest s-p OOD, demonstrating the weakest shuttle effect and the lowest reaction energy barriers in both SRR and SOR. Accordingly, the designed catalysts allow the Na-S pouch batteries to retain a high capacity of 490.7 mAh g-1 at 2 A g-1 with a Coulombic efficiency of 96 % at a low electrolyte/sulfur (E/S) ratio of 4.5 μl mg-1. This work offers an s-p orbital overlap descriptor describing the interaction between NaPSs and p-orbital-dominated catalysts for high-performance RT Na-S batteries.
Collapse
Affiliation(s)
- Guangxuan Wu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Tongfeng Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Zhoujie Lao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Yihao Cheng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Tianshuai Wang
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, People's Republic of China
| | - Jing Mao
- National Demonstration Center for Materials Science & Engineering Education, Tianjin University, 135 Yaguan Road, Tianjin, 300350, People's Republic of China
| | - Haichang Zhang
- School of Materials Science & Engineering and State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Enzuo Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Chunsheng Shi
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Ningning Wu
- School of Materials Science & Engineering and State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300350, People's Republic of China
| |
Collapse
|
3
|
Fu Q, Liang S, Su X. Nanowire-like phosphorus modulated carbon-based iron nanozyme with oxidase-like activity for sensitive detection of choline and dye degradation. Talanta 2025; 283:127169. [PMID: 39515053 DOI: 10.1016/j.talanta.2024.127169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Choline is mainly supplemented through food intake, lack of choline would result in diseases like liver cirrhosis, hardening of the arteries, or neurodegenerative disorders. The accurate detection of choline is important for human health. Herein, a novel nanowire-like phosphorus/nitrogen co-doped carbon-based iron nanozyme (Fe-NPC) with outstanding oxidase-like activity was synthesized, and the influence of phosphorus doping on oxidase-like activity was explored. Proper phosphorus doping was found to enhance the oxidase-like activity of Fe-NPC by increasing surface defects, promoting iron loading, and modulating chemical environment of central site. The oxidase-like activity of Fe-NPC was successfully applied to colorimetric-fluorescent dual mode detection of choline, and good linear relationship in the ranges of 3-200 μM were achieved with LODs of 1.95 and 1.50 μM, respectively. The fluorescent detection was constructed based on the fluorescence quenching of silicon quantum dots (Si QDs) by quinone-imine. The quenching mechanism was attributed to FRET due to the large spectra overlap, reduced fluorescence lifetime and proper donor-acceptor distance. The successful application to the detection of choline in milk proved the practicability of the proposed sensing method. The oxidase-like properties of Fe-NPC was further used in the degradation of cationic dye methyl blue, high degradation efficiency of 74 % was achieved within 5 min under optimal conditions, proving the enormous potential of Fe-NPC for application in environment protection.
Collapse
Affiliation(s)
- Qingjie Fu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Shuang Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
4
|
Liu X, Fang J, Guan J, Wang S, Xiong Y, Mao J. Substance migration in the synthesis of single-atom catalysts. Chem Commun (Camb) 2025; 61:1800-1817. [PMID: 39749657 DOI: 10.1039/d4cc05747c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Substance migration is universal and crucial in the synthesis of catalysts, which directly affects their existing form and the micro-structure of their active sites. Realizing migration during the synthesis of single-atom catalysts (SACs) is beneficial for not only increasing their metal loading capacity but also manipulating the electronic structures (coordination structure, long-range interactions, etc.) of their metal sites. This review summarizes the thermodynamics and kinetic processes involved in the synthesis of SACs to unveil the fundamental principles involved in their synthesis. For a better understanding of the effect of migration, the migration of both metal (including ions, atoms, and molecules) and nonmetal species is outlined. Moreover, we propose the research directions to guide the rational design of SACs in the future and deepen the fundamental understanding in the formation of catalysts.
Collapse
Affiliation(s)
- Xu Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Jiaojiao Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Jianping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Shibin Wang
- Institute of Industrial Catalysis, College of Chemical Engineering Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Yu Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
5
|
Wang X, Yang L, Li J, Yin Z, Chen Y, Tian Q, Yang Y, Liu H, Zhang L. Constructing Nitrogen-Coordinated Single Atom Catalysts via Bond-Plucking Strategy for Oxidation of Benzene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407804. [PMID: 39573857 DOI: 10.1002/smll.202407804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/28/2024] [Indexed: 01/23/2025]
Abstract
Single-atom catalysts (SACs) with nitrogen-coordinated active centers feature unique electronic and geometric structures and thus show high catalytic activity for various industrial reactions. Searching for operable synthesis protocols to accurately devise SACs is vital but remains challenging because commonly used high-temperature pyrolysis always causes unpredictable structural changes and inhomogeneous single-atom sites. Herein, a mild bond-plucking strategy is reported to construct atomically dispersed Cu supported on graphene-liked C3N4 (g-C3N4) under lower than 100 °C, and Cu foam is used as the source of metal. When g-C3N4 closely coats the surface of Cu foam, Cu0 atoms on Cu foam transfer electrons to nitrogen on g-C3N4 due to the strong Lewis acbase interaction, simultaneously forming Cuδ+ (0 < δ < 2) and Cu─N bonds. Subsequently, g-C3N4 nanosheets are exfoliated out from the surface of Cu foam, eventually obtaining a well-defined Cu single atoms/g-C3N4 (Cu SAs/g-C3N4) catalyst with atomically dispersed Cu-N3 moieties. Cu SAs/g-C3N4 serves as a highly effective and durable catalyst toward the oxidation of benzene to phenol at 60 °C, with a conversion of 65.1% and selectivity of 97.6% after 12 h. The findings pave a new way to construct well-defined SACs at low costs, promoting large-scale production and industrial application.
Collapse
Affiliation(s)
- Xuejing Wang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 1 Dongxiang Road, Xi' an, 710129, China
| | - Lihua Yang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 1 Dongxiang Road, Xi' an, 710129, China
| | - Jian Li
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 1 Dongxiang Road, Xi' an, 710129, China
| | - Zhongqian Yin
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 1 Dongxiang Road, Xi' an, 710129, China
| | - Yao Chen
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 1 Dongxiang Road, Xi' an, 710129, China
| | - Qing Tian
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 1 Dongxiang Road, Xi' an, 710129, China
| | - Yingchun Yang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 1 Dongxiang Road, Xi' an, 710129, China
| | - Huifang Liu
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 1 Dongxiang Road, Xi' an, 710129, China
| | - Lianbing Zhang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 1 Dongxiang Road, Xi' an, 710129, China
| |
Collapse
|
6
|
Che W, Li P, Han GF, Noh HJ, Seo JM, Jeon JP, Li C, Liu W, Li F, Liu Q, Baek JB. Out-of-Plane Single-Copper-Site Catalysts for Room-Temperature Benzene Oxidation. Angew Chem Int Ed Engl 2024; 63:e202403017. [PMID: 38429994 DOI: 10.1002/anie.202403017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/03/2024]
Abstract
Crafting single-atom catalysts (SACs) that possess "just right" modulated electronic and geometric structures, granting accessible active sites for direct room-temperature benzene oxidation is a coveted objective. However, achieving this goal remains a formidable challenge. Here, we introduce an innovative in situ phosphorus-immitting strategy using a new phosphorus source (phosphorus nitride, P3N5) to construct the phosphorus-rich copper (Cu) SACs, designated as Cu/NPC. These catalysts feature locally protruding metal sites on a nitrogen (N)-phosphorus (P)-carbon (C) support (NPC). Rigorous analyses, including X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS), validate the coordinated bonding of nitrogen and phosphorus with atomically dispersed Cu sites on NPC. Crucially, systematic first-principles calculations, coupled with the climbing image nudged-elastic-band (CI-NEB) method, provide a comprehensive understanding of the structure-property-activity relationship of the distorted Cu-N2P2 centers in Cu/NPC for selective oxidation of benzene to phenol production. Interestingly, Cu/NPC has shown more energetically favorable C-H bond activation compared to the benchmark Cu/NC SACs in the direct oxidation of benzene, resulting in outstanding benzene conversion (50.3 %) and phenol selectivity (99.3 %) at room temperature. Furthermore, Cu/NPC achieves a remarkable turnover frequency of 263 h-1 and mass-specific activity of 35.2 mmol g-1 h-1, surpassing the state-of-the-art benzene-to-phenol conversion catalysts to date.
Collapse
Affiliation(s)
- Wei Che
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Republic of, Korea
| | - Pai Li
- State Key Laboratory of Integrated Circuit Materials, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Gao-Feng Han
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Republic of, Korea
| | - Hyuk-Jun Noh
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Republic of, Korea
| | - Jeong-Min Seo
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Republic of, Korea
| | - Jong-Pil Jeon
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Republic of, Korea
| | - Changqing Li
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Republic of, Korea
| | - Wei Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Feng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, Anhui, P. R. China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 (Republic of, Korea
| |
Collapse
|
7
|
Yang Y, Wang G, Zhang S, Jiao C, Wu X, Pan C, Mao J, Liu Y. Boron in the Second Coordination Sphere of Fe Single Atom Boosts the Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16224-16231. [PMID: 38513153 DOI: 10.1021/acsami.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Metal single atoms coordinated with four nitrogen atoms (M1N4) are regarded as tremendously promising catalysts for the electrocatalytic oxygen reduction reaction (ORR). Nevertheless, the strong bond intensity between the metal center and the O atom in oxygen-containing intermediates significantly limits the ORR activity of M1N4. Herein, the catalytically active B atom is successfully introduced into the second coordination sphere of the Fe single atom (Fe1N4-B-C) to realize the alternative binding of B and O atoms and thus facilitate the ORR activity. Compared with the pristine Fe1N4 catalyst, the synthesized Fe1N4-B-C catalyst exhibits improved ORR catalytic capability with a half-wave potential (E1/2) of 0.80 V and a kinetic current density (JK) of 5.32 mA cm-2 in acid electrolyte. Moreover, in an alkaline electrolyte, the Fe1N4-B-C catalyst displays remarkable ORR activity with E1/2 of 0.87 V and JK of 8.94 mA cm-2 at 0.85 V, outperforming commercial Pt/C. Notably, the mechanistic study has revealed that the active center is the B atom in the second coordination shell of the Fe1N4-B-C catalyst, which avoids the direct bonding of Fe-O. The B center has a moderate binding force to the ORR intermediate, which flattens the ORR energy diagram and thereby improves the ORR performance. Therefore, this study offers a novel strategy for tailoring catalytic performance by tuning the active center of single-atom catalyst.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Gang Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Shuangshuang Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Chi Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xiaoyan Wu
- Anhui RuiHy Power Technology Co., Ltd., Wuhu 241002, China
| | - Chenbing Pan
- Anhui RuiHy Power Technology Co., Ltd., Wuhu 241002, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
8
|
Qi Z, Zhou Y, Guan R, Fu Y, Baek JB. Tuning the Coordination Environment of Carbon-Based Single-Atom Catalysts via Doping with Multiple Heteroatoms and Their Applications in Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210575. [PMID: 36779510 DOI: 10.1002/adma.202210575] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Carbon-based single-atom catalysts (SACs) are considered to be a perfect platform for studying the structure-activity relationship of different reactions due to the adjustability of their coordination environment. Multi-heteroatom doping has been demonstrated as an effective strategy for tuning the coordination environment of carbon-based SACs and enhancing catalytic performance in electrochemical reactions. Herein, recently developed strategies for multi-heteroatom doping, focusing on the regulation of single-atom active sites by heteroatoms in different coordination shells, are summarized. In addition, the correlation between the coordination environment and the catalytic activity of carbon-based SACs are investigated through representative experiments and theoretical calculations for various electrochemical reactions. Finally, concerning certain shortcomings of the current strategies of doping multi-heteroatoms, some suggestions are put forward to promote the development of carbon-based SACs in the field of electrocatalysis.
Collapse
Affiliation(s)
- Zhijie Qi
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yan Zhou
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Runnan Guan
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Yongsheng Fu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
9
|
Jin H, Cui P, Cao C, Yu X, Zhao R, Ma D, Song W. Understanding the Density-Dependent Activity of Cu Single-Atom Catalyst in the Benzene Hydroxylation Reaction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hongqiang Jin
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changyan Cao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohu Yu
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723000, China
| | - Runqing Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Weiguo Song
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Regulating electron configuration of single Cu sites via unsaturated N,O-coordination for selective oxidation of benzene. Nat Commun 2022; 13:6996. [DOI: 10.1038/s41467-022-34852-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractDeveloping highly efficient catalyst for selective oxidation of benzene to phenol (SOBP) with low H2O2 consumption is highly desirable for practical application, but challenge remains. Herein, we report unique single-atom Cu1-N1O2 coordination-structure on N/C material (Cu-N1O2 SA/CN), prepared by water molecule-mediated pre-assembly-pyrolysis method, can efficiently boost SOBP reaction at a 2:1 of low H2O2/benzene molar ratio, showing 83.7% of high benzene conversion with 98.1% of phenol selectivity. The Cu1-N1O2 sites can provide a preponderant reaction pathway for SOBP reaction with less steps and lower energy barrier. As a result, it shows an unexpectedly higher turnover frequency (435 h−1) than that of Cu1-N2 (190 h−1), Cu1-N3 (90 h−1) and Cu nanoparticle (58 h−1) catalysts, respectively. This work provides a facile and efficient method for regulating the electron configuration of single-atom catalyst and generates a highly active and selective non-precious metal catalyst for industrial production of phenol through selective oxidation of benzene.
Collapse
|
11
|
Kumar P, Vijay Jagtap A, Gupta S, Vinod CP. La-Cu based heterogeneous perovskite catalyst for highly selective benzene hydroxylation under mild conditions. Chem Asian J 2022; 17:e202200788. [PMID: 36216572 DOI: 10.1002/asia.202200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Indexed: 11/09/2022]
Abstract
Direct hydroxylation of benzene towards phenol with high conversion and selectivity remains a great challenge. We report herein an efficient La2 CuO4 perovskite catalyst for one-step oxidation of benzene using hydrogen peroxide under mild conditions. The catalyst was characterized using XRD, TEM, XPS, TG-DTA, and other advanced techniques. The one-pot hydroxylation reaction carried out at 60 °C under optimum reaction conditions in the presence of catalytic material shows benzene to phenol transformation with 51% conversion with >99% selectivity with 65 percent peroxide efficiency, respectively. The influence of reaction conditions such as temperature, amount of oxidant, reaction time and mode of addition of the oxidant was crucial in selectivity optimization.
Collapse
Affiliation(s)
- Pawan Kumar
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Anuradha Vijay Jagtap
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Sharad Gupta
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, Maharashtra, India
| | - Chathakudath P Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008, Pune, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
12
|
Zhang Y, Liu T, Wang X, Dang Q, Zhang M, Zhang S, Li X, Tang S, Jiang J. Dual-Atom Metal and Nonmetal Site Catalyst on a Single Nickel Atom Supported on a Hybridized BCN Nanosheet for Electrochemical CO 2 Reduction to Methane: Combining High Activity and Selectivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9073-9083. [PMID: 35138796 DOI: 10.1021/acsami.1c22761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atomically dispersed nitrogen-coordinated transition-metal sites supported on graphene (TM-N4-C) offer promising potential for the electrochemical carbon dioxide reduction reaction (CO2RR). However, a few TM-Nx-C single-atom catalysts (SAC) are capable of reducing CO2 to multielectron products with high activity and selectivity. Herein, using density functional theory calculations, we investigated the electrocatalytic performance of a single TM atom embedded into a defective BCN nanosheet for CO2RR. The N and B atom co-coordinated TM center, namely, TM-B2N2, constructs a symmetry-breaking site, which strengthens the overlapping of atomic orbitals, and enables the linear CO2 to be curved and activated, compared to the weak coupling of CO2 with the symmetric TM-N4 site. Moreover, the TM-B2N2 sites play a role of dual-atom active sites, in which the TM atom serves as the carbon adsorption site and the B atom acts as the oxygen adsorption site, largely stabilizing the key intermediates, especially *COOH. The symmetry-breaking coordination structures shift the d-band center of the TM atom toward the Fermi level and thus facilitate CO2 reduction to hydrocarbons and oxygenates. As a result, different from the TM-N4-C structure that leads to CO as the major product, the Ni atom supported on BCN can selectively catalyze CO2 conversion into CH4, with an ultralow limiting potential of -0.07 V, while suppressing the hydrogen evolution reaction. Our finding suggests that introduction of a nonmetal active site adjacent to the metal site provides a new avenue for achieving efficient multi-intermediate electrocatalytic reactions.
Collapse
Affiliation(s)
- Yuqin Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Tianyong Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaohang Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Qian Dang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Mingjie Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Shiyong Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xingxing Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Shaobin Tang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|