1
|
Rajendran V, Erulappan J, Thomas KRJ. Strategies for Enabling RGB Emission in Fused Carbazole Derivatives. Chem Asian J 2025:e202500254. [PMID: 40308172 DOI: 10.1002/asia.202500254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
The development of organic light-emitting diodes (OLEDs) has witnessed remarkable progress in material design and device architecture. Recent advancements, particularly in the fourth generation of OLEDs, have introduced groundbreaking innovations such as hyperfluorescence and multiresonance (MR) thermally activated delayed fluorescence (MRTADF) emitters. Carbazole has emerged as a versatile scaffold, playing a pivotal role in conventional fluorescence, TADF, roomtemperature phosphorescence (RTP), and MRTADF systems. In recent years, fused carbazole derivatives have gained significant attention as both emitting and host materials in OLEDs. The fusion of carbazole units enhances molecular rigidity and extends the πconjugation, enabling precise tuning of optoelectronic properties across a wide color gamut, including blue, green, orange, yellow, and red emissions. This review systematically explores the application of various fused carbazole systems such as indolocarbazole, thienocarbazole, furocarbazole, indenocarbazole, triazatruxene, acridinecarbazole, chromenocarbazole, pyrenocarbazole, helicene carbazole, and carbazolefused boron/carbonyl MRTADF emitters in OLEDs. The discussion is organized into three sections based on their application in blue, green, and red OLEDs, providing a comprehensive understanding of structure-property relationships. Additionally, other color-emitting OLEDs are discussed where relevant, offering a holistic perspective on the potential of fused carbazole derivatives in next-generation OLED technologies.
Collapse
Affiliation(s)
- Vignesh Rajendran
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Jeyasurya Erulappan
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - K R Justin Thomas
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
2
|
Lan X, Zeng J, Chen J, Yang T, Dong X, Tang BZ, Zhao Z. Robust Sandwich-Structured Thermally Activated Delayed Fluorescence Molecules Utilizing 11,12-Dihydroindolo[2,3-a]carbazole as Bridge. Angew Chem Int Ed Engl 2025; 64:e202414488. [PMID: 39198216 DOI: 10.1002/anie.202414488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
Constructing folded molecular structures is emerging as a promising strategy to develop efficient thermally activated delayed fluorescence (TADF) materials. Most folded TADF materials have V-shaped configurations formed by donors and acceptors linked on carbazole or fluorene bridges. In this work, a facile molecular design strategy is proposed for exploring sandwich-structured molecules, and a series of novel and robust TADF materials with regular U-shaped sandwich conformations are constructed by using 11,12-dihydroindolo[2,3-a]carbazole as bridge, xanthone as acceptor, and dibenzothiophene, dibenzofuran, 9-phenylcarbazole and indolo[3,2,1-JK]carbazole as donors. They hold outstanding thermal stability with ultrahigh decomposition temperatures (556-563 °C), and exhibit fast delayed fluorescence and excellent photoluminescence quantum efficiencies (86 %-97 %). The regular and close stacking of acceptor and donors results in rigidified molecular structures with efficient through-space interaction, which are conducive to suppressing intramolecular motion and reducing reorganized excited-state energy. The organic light-emitting diodes (OLEDs) using them as emitters exhibit excellent electroluminescence performances, with maximum external quantum efficiencies of up to 30.6 %, which is a leading value for the OLEDs based on folded TADF emitters. These results demonstrate the proposed strategy of employing 11,12-dihydroindolo[2,3-a]carbazole as bridge for planar donors and acceptors to construct efficient folded TADF materials is applicable.
Collapse
Affiliation(s)
- Xia Lan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jiajie Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jinke Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Tao Yang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Xiaobin Dong
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
3
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
4
|
Balszuweit J, Stahl P, Cappellari V, Lorberg RY, Wölper C, Niemeyer FC, Koch J, Prymak O, Knauer SK, Strassert CA, Voskuhl J. Merging of a Supramolecular Ligand with a Switchable Luminophore - Light-Responsiveness, Photophysics and Bioimaging. Chemistry 2024; 30:e202402578. [PMID: 39054904 DOI: 10.1002/chem.202402578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/27/2024]
Abstract
In this contribution we report on a novel approach towards luminescent light-responsive ligands. To this end, cyanostilbene- guanidiniocarbonyl-pyrrole hybrids were designed and investigated. Merging of a luminophore with a supramolecular bioactive ligand bears numerous advantages by overcoming the typical drawbacks of drug-labelling, influencing the overall performance of the active species by attachment of a large luminophore. Here we were able to establish a simple and easily accessible synthesis route to different cyanostyryl-guanidininiocarbonyl-pyrrole (CGCP) derivatives. These compounds were investigated regarding their light-responsive double bond isomerisation, their molecular structures in single crystals by means of X-ray diffractometry, their emission properties by state of the art photophysical characterisation as well as bioimaging and assessment of cell toxicity.
Collapse
Affiliation(s)
- Jan Balszuweit
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| | - Paul Stahl
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Victoria Cappellari
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Rick Y Lorberg
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
| | - Felix C Niemeyer
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| | - Johannes Koch
- Center of Medical Biotechnology (ZMB), University of Duisburg Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Oleg Prymak
- Institute for Inorganic Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
| | - Shirley K Knauer
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| |
Collapse
|
5
|
Nasrollahpour H, Mirzaie A, Sharifi M, Rezabakhsh A, Khalilzadeh B, Rahbarghazi R, Yousefi H, Klionsky DJ. Biosensors; a novel concept in real-time detection of autophagy. Biosens Bioelectron 2024; 254:116204. [PMID: 38507929 PMCID: PMC11907300 DOI: 10.1016/j.bios.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Autophagy is an early-stage response with self-degradation properties against several insulting conditions. To date, the critical role of autophagy has been well-documented in physiological and pathological conditions. This process involves various signaling and functional biomolecules, which are involved in different steps of the autophagic response. During recent decades, a range of biochemical analyses, chemical assays, and varied imaging techniques have been used for monitoring this pathway. Due to the complexity and dynamic aspects of autophagy, the application of the conventional methodology for following autophagic progression is frequently associated with a mistake in discrimination between a complete and incomplete autophagic response. Biosensors provide a de novo platform for precise and accurate analysis of target molecules in different biological settings. It has been suggested that these devices are applicable for real-time monitoring and highly sensitive detection of autophagy effectors. In this review article, we focus on cutting-edge biosensing technologies associated with autophagy detection.
Collapse
Affiliation(s)
| | - Arezoo Mirzaie
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Sharifi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Yousefi
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Jayabharathi J, Thanikachalam V. Robust luminogens as cutting-edge tools for efficient light emission in recent decades. Phys Chem Chem Phys 2024; 26:13561-13605. [PMID: 38655772 DOI: 10.1039/d4cp00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Blue luminogens play a vital role in white lighting and potential metal-free fluorescent materials and their high-lying excited states contribute to harvesting triplet excitons in devices. However, in TADF-OLEDs (ΔEST < 0.1 eV), although T1 excitons transfer to S1via RISC with 100% IQE, the longer lifetime of blue TADF suffers from efficiency roll-off (RO). In this case, hybridized local and charge transfer (HLCT) materials have attracted significant interest in lighting owing to their 100% hot exciton harvesting and enhanced efficiency. Both academics and industrialists widely use the HLCT strategy to improve the efficiency of fluorescent organic light-emitting diodes (FOLEDs) by harvesting dark triplet excitons through the RISC process. Aggregation-induced emissive materials (AIEgens) possess tight packing in the aggregation state, and twisted AIEgens with HLCT behaviour have a shortened conjugation length, inducing blue emission and making them suitable candidates for OLED applications. TTA-OLEDs are used in commercial BOLEDs because of their moderate efficiency and reasonable operation lifetime. In this review, we discuss the devices based on TTA fluorophores, TADF fluorophores, HLCT fluorophores, AIEgens and HLCT-sensitized fluorophores (HLCT-SF), which break through the statistical limitations.
Collapse
Affiliation(s)
- Jayaraman Jayabharathi
- Department of Chemistry, Annamalai University, Annamalainagar, Tamilnadu-608 002, India.
| | | |
Collapse
|
7
|
Zhang K, He G, Cai L, Fan J, Lin L, Wang CK, Li J. Role of Bridging Groups in Regulating the Luminescence and Charge Transfer Properties of Thermally Activated Delayed Fluorescence Molecules: A Theoretical Perspective. J Phys Chem A 2024; 128:3158-3169. [PMID: 38598685 DOI: 10.1021/acs.jpca.4c01174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Organic emitters with a simultaneous combination of aggregation-induced emission (AIE) and thermally activated delayed fluorescence (TADF) characteristics are in great demand due to their excellent comprehensive performances toward efficient organic light-emitting diodes (OLEDs), biomedical imaging, and the telecommunications field. However, the development of efficient AIE-TADF materials remains a substantial challenge. In this work, light-emitting properties of two AIE-TADF molecules with different bridging groups ICz-BP and ICz-DPS are theoretically investigated in the solid state with the combined quantum mechanics/molecular mechanics (QM/MM) method and the thermal vibration correlation function (TVCF) theory. The research indicates that the C═O bridging bond in ICz-BP is more favorable than the S═O bridging bond in ICz-DPS for enhancing the planarity of the acceptor, increasing conjugation, and thereby elevating the transition dipole moment density. Simultaneously, the stacking pattern of ICz-BP in the solid facilitates a reduction in energy gap between S1 and T1 (ΔEST), achieving rapid reverse intersystem crossing rate (kRISC). Furthermore, compared to toluene, the stacking patterns of ICz-BP and ICz-DPS in the solid effectively suppress the out-of-plane wagging vibration of the acceptor, thereby inhibiting the loss of nonradiative energy in the excited state and realizing aggregation-induced emission. Moreover, the charge transport properties of both electrons and holes in ICz-BP are found to be higher than the corresponding rates in ICz-DPS, attributed to the smaller internal reorganization energy of ICz-BP in the solid state. Additionally, the calculations reveal a more balanced charge transport characteristic in ICz-BP, contributing to efficient exciton recombination and emission and ultimately mitigating efficiency roll-off. Based on these computational results, we aim to unveil the relationship between molecular structure and light-emitting properties, aiding in the design and development of efficient AIE-TADF devices.
Collapse
Affiliation(s)
- Kai Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - GuangLu He
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lei Cai
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China
| | - Jing Li
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
8
|
Siddiqui I, Gautam P, Blazevicius D, Jayakumar J, Lenka S, Tavgeniene D, Zaleckas E, Grigalevicius S, Jou JH. Bicarbazole-Benzophenone Based Twisted Donor-Acceptor Derivatives as Potential Blue TADF Emitters for OLEDs. Molecules 2024; 29:1672. [PMID: 38611951 PMCID: PMC11013760 DOI: 10.3390/molecules29071672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Over the past few decades, organic light-emitting diodes (OLEDs) find applications in smartphones, televisions, and the automotive sector. However, this technology is still not perfect, and its application for lighting purposes has been slow. For further development of the OLEDs, we designed twisted donor-acceptor-type electroactive bipolar derivatives using benzophenone and bicarbazole as building blocks. Derivatives were synthesized through the reaction of 4-fluorobenzophenone with various mono-alkylated 3,3'-bicarbazoles. We have provided a comprehensive structural characterization of these compounds. The new materials are amorphous and exhibit suitable glass transition temperatures ranging from 57 to 102 °C. They also demonstrate high thermal stability, with decomposition temperatures reaching 400 °C. The developed compounds exhibit elevated photoluminescence quantum yields (PLQY) of up to 75.5% and favourable HOMO-LUMO levels, along with suitable triplet-singlet state energy values. Due to their good solubility and suitable film-forming properties, all the compounds were evaluated as blue TADF emitters dispersed in commercial 4,4'-bis(N-carbazolyl)-1,10-biphenyl (CBP) host material and used for the formation of emissive layer of organic light-emitting diodes (OLEDs) in concentration-dependent experiments. Out of these experiments, the OLED with 15 wt% of the emitting derivative 4-(9'-{2-ethylhexyl}-[3,3']-bicarbazol-9-yl)benzophenone exhibited superior performance. It attained a maximum brightness of 3581 cd/m2, a current efficacy of 5.7 cd/A, a power efficacy of 4.1 lm/W, and an external quantum efficacy of 2.7%.
Collapse
Affiliation(s)
- Iram Siddiqui
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan (J.J.); (S.L.)
| | - Prakalp Gautam
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan (J.J.); (S.L.)
| | - Dovydas Blazevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT-50254 Kaunas, Lithuania (D.T.)
| | - Jayachandran Jayakumar
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan (J.J.); (S.L.)
| | - Sushanta Lenka
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan (J.J.); (S.L.)
| | - Daiva Tavgeniene
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT-50254 Kaunas, Lithuania (D.T.)
| | - Ernestas Zaleckas
- Department of Agricultural Engineering and Safety, Agriculture Academy, Vytautas Magnus University, Studentu Str. 11, Akademija, LT-53361 Kaunas, Lithuania
| | - Saulius Grigalevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT-50254 Kaunas, Lithuania (D.T.)
| | - Jwo-Huei Jou
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan (J.J.); (S.L.)
| |
Collapse
|
9
|
Bi H, Jiang J, Chen J, Kuang X, Zhang J. Machine Learning Prediction of Quantum Yields and Wavelengths of Aggregation-Induced Emission Molecules. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1664. [PMID: 38612177 PMCID: PMC11012915 DOI: 10.3390/ma17071664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
The aggregation-induced emission (AIE) effect exhibits a significant influence on the development of luminescent materials and has made remarkable progress over the past decades. The advancement of high-performance AIE materials requires fast and accurate predictions of their photophysical properties, which is impeded by the inherent limitations of quantum chemical calculations. In this work, we present an accurate machine learning approach for the fast predictions of quantum yields and wavelengths to screen out AIE molecules. A database of about 563 organic luminescent molecules with quantum yields and wavelengths in the monomeric/aggregated states was established. Individual/combined molecular fingerprints were selected and compared elaborately to attain appropriate molecular descriptors. Different machine learning algorithms combined with favorable molecular fingerprints were further screened to achieve more accurate prediction models. The simulation results indicate that combined molecular fingerprints yield more accurate predictions in the aggregated states, and random forest and gradient boosting regression algorithms show the best predictions in quantum yields and wavelengths, respectively. Given the successful applications of machine learning in quantum yields and wavelengths, it is reasonable to anticipate that machine learning can serve as a complementary strategy to traditional experimental/theoretical methods in the investigation of aggregation-induced luminescent molecules to facilitate the discovery of luminescent materials.
Collapse
Affiliation(s)
| | | | | | | | - Jinxiao Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China; (H.B.)
| |
Collapse
|
10
|
Godi M, Kwon H, Park S, Park S, Lee H, Lee K, Park J. Enhancing OLED emitter efficiency through increased rigidity. RSC Adv 2024; 14:8135-8144. [PMID: 38464691 PMCID: PMC10921275 DOI: 10.1039/d3ra07937f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
Three new blue materials, TPI-InCz, PAI-InCz, and CN-PAI-InCz, have been developed. In the film state, TPI-InCz and PAI-InCz exhibited emission peaks at 411 and 431 nm indicating deep blue emission. CN-PAI-InCz showed a peak emission at 452 nm, within the real blue region. When these three materials were used as the emissive layer to fabricate non-doped devices, CN-PAI-InCz showed the highest current efficiency of 2.91 cd A-1, power efficiency of 1.93 lm W-1, and external quantum efficiency of 3.31%. Among the synthesized materials, CN-PAI-InCz exhibited superior charge balance due to the introduction of CN groups, as confirmed by hole-only devices and electron-only devices. PAI-InCz demonstrated fast hole mobility with a value of 1.50 × 10-3 cm2 V-1 s-1, attributed to its planar and highly rigid structure. In the resulting devices, the Commission Internationale de l'Eclairage coordinates for TPI-InCz, PAI-InCz, and CN-PAI-InCz were (0.162, 0.048), (0.0161, 0.067), and (0.155, 0.099), all indicating emission in the blue region.
Collapse
Affiliation(s)
- Mahendra Godi
- Integrated Engineering, Department of Chemical Engineering, Kyung Hee University Gyeonggi 17104 Republic of Korea
| | - Hyukmin Kwon
- Integrated Engineering, Department of Chemical Engineering, Kyung Hee University Gyeonggi 17104 Republic of Korea
| | - Sangwook Park
- Integrated Engineering, Department of Chemical Engineering, Kyung Hee University Gyeonggi 17104 Republic of Korea
| | - Sunwoo Park
- Integrated Engineering, Department of Chemical Engineering, Kyung Hee University Gyeonggi 17104 Republic of Korea
| | - Hayoon Lee
- Integrated Engineering, Department of Chemical Engineering, Kyung Hee University Gyeonggi 17104 Republic of Korea
| | - Kiho Lee
- Integrated Engineering, Department of Chemical Engineering, Kyung Hee University Gyeonggi 17104 Republic of Korea
| | - Jongwook Park
- Integrated Engineering, Department of Chemical Engineering, Kyung Hee University Gyeonggi 17104 Republic of Korea
| |
Collapse
|
11
|
Blazevicius D, Grigalevicius S. A Review of Benzophenone-Based Derivatives for Organic Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:356. [PMID: 38392729 PMCID: PMC10892487 DOI: 10.3390/nano14040356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Organic light-emitting diodes (OLEDs) have garnered considerable attention in academic and industrial circles due to their potential applications in flat-panel displays and solid-state lighting technologies, leveraging the advantages offered by organic electroactive derivatives over their inorganic counterparts. The thin and flexible design of OLEDs enables the development of innovative lighting solutions, facilitating the creation of customizable and contoured lighting panels. Among the diverse electroactive components employed in the molecular design of OLED materials, the benzophenone core has attracted much attention as a fragment for the synthesis of organic semiconductors. On the other hand, benzophenone also functions as a classical phosphor with high intersystem crossing efficiency. This characteristic makes it a compelling candidate for effective reverse intersystem crossing, with potential in leading to the development of thermally activated delayed fluorescent (TADF) emitters. These emitting materials witnessed a pronounced interest in recent years due to their incorporation in metal-free electroactive frameworks and the capability to convert triplet excitons into emissive singlet excitons through reverse intersystem crossing (RISC), consequently achieving exceptionally high external quantum efficiencies (EQEs). This review article comprehensively overviews the synthetic pathways, thermal characteristics, electrochemical behaviour, and photophysical properties of derivatives based on benzophenone. Furthermore, we explore their applications in OLED devices, both as host materials and emitters, shedding light on the promising opportunities that benzophenone-based compounds present in advancing OLED technology.
Collapse
Affiliation(s)
- Dovydas Blazevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT50254 Kaunas, Lithuania
| | - Saulius Grigalevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT50254 Kaunas, Lithuania
| |
Collapse
|
12
|
Wang H, Chen JX, Shi YZ, Zhang X, Zhou L, Hao XY, Yu J, Wang K, Zhang XH. An A-D-A-Type Thermally Activated Delayed Fluorescence Emitter with Intrinsic Yellow Emission Realizing Record-High Red/NIR OLEDs upon Modulating Intermolecular Aggregations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307725. [PMID: 37792472 DOI: 10.1002/adma.202307725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Realizing efficient red/near-infrared (NIR) electroluminescence (EL) by precisely modulating molecular aggregations of thermally activated delayed fluorescence (TADF) emitters is an attractive pathway, yet the molecular designs are elusive. Here, a new approach is proposed to manage molecular aggregation via a mild-twist acceptor-donor-acceptor (A-D-A)-type molecular design. A proof-of-concept TADF molecule, QCN-PhSAC-QCN, is developed that furnishes a fast radiative rate and obvious aggregation-induced emission feature. Its emission bands can be facilely shifted from intrinsic yellow to the red/NIR region via fine-tuning doping levels and molecular aggregates while maintaining elegant photoluminescence quantum yields benefiting from suppressed exciton annihilation processes. As a result, a QCN-PhSAC-QCN-based organic light-emitting diode (OLED) exhibits a record-setting external quantum efficiency (EQE) of 39.1% at a doping ratio of 10 wt.%, peaking at 620 nm. Moreover, its nondoped NIR OLED affords a champion EQE of 14.3% at 711 nm and retains outstanding EQEs of 5.40% and 2.35% at current densities of 10 and 100 mA cm-2 , respectively, which are the highest values among all NIR-TADF OLEDs at similar density levels. This work validates the feasibility of such mild-twist A-D-A-type molecular design for precisely controlling molecular aggregation while maintaining high efficiency, thus providing a promising pathway for high-performance red/NIR TADF OLEDs.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jia-Xiong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yi-Zhong Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, P. R. China
| | - Xi Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Lu Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiao-Yao Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
13
|
Wang J, Yang Y, Gu F, Zhai X, Yao C, Zhang J, Jiang C, Xi X. Molecular Engineering Modulating the Singlet-Triplet Energy Splitting of Indolocarbazole-Based TADF Emitters Exhibiting AIE Properties for Nondoped Blue OLEDs with EQE of Nearly 20. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59643-59654. [PMID: 38090754 DOI: 10.1021/acsami.3c14230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The development of efficient blue thermally activated delayed fluorescence (TADF) emitters with an aggregation-induced emission (AIE) nature, for the construction of organic light-emitting diodes (OLEDs), is still insufficient. This can be attributed to the challenges encountered in molecular design, including the inherent trade-off between radiative decay and reverse intersystem crossing (RISC), as well as small singlet-triplet energy splitting (ΔEST) and the requirement for high photoluminescence quantum yields (ΦPL). Herein, we present the design of three highly efficient blue TADF molecules with AIE characteristics by combining π-extended donors with different acceptors to modulate the differences in the electron-donating and electron-withdrawing abilities. This approach not only ensures high emission efficiency by suppressing close π-π stacking, weakening nonradiative relaxation, and enhancing radiative transition but also maintains the equilibrium ratio between the triplet and singlet excitons by facilitating the process of RISC. These emitters exhibit AIE and TADF properties, featuring quick radiative rates and low nonradiative rates. The ΦPL of these emitters reached an impressive 88%. Based on their excellent comprehensive performance, nondoped PICzPMO and PICzPMO OLEDs achieved excellent electroluminescence performance, exhibiting maximum external quantum efficiency (EQEmax) of up to 19.5%, while the doped device achieved a higher EQEmax of 20.8%. This work demonstrated that by fusing π-extended large rigid donors with different acceptors, it is possible to regulate the difference in electron-donating and electron-withdrawing abilities, resulting in a small ΔEST, high ΦPL, and fast RISC process, which is a highly feasible strategy for designing efficient TADF molecules.
Collapse
Affiliation(s)
- Jinshan Wang
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yuguang Yang
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fei Gu
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xuesong Zhai
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chuang Yao
- Chongqing Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM), Yangtze Normal University, Chongqing 408100, China
| | - Jianfeng Zhang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Cuifeng Jiang
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xinguo Xi
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
14
|
Lee S, Lee J, Jeon S. Aggregation-induced emission of matrix-free graphene quantum dots via selective edge functionalization of rotor molecules. SCIENCE ADVANCES 2023; 9:eade2585. [PMID: 36800418 PMCID: PMC9937574 DOI: 10.1126/sciadv.ade2585] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Graphene quantum dots (GQDs) are nanosized graphene derivatives with unique photoluminescence (PL) properties that have advantages in optoelectronic applications due to their stable blue light emission. However, aggregation-caused quenching (ACQ) of GQDs limits the practical applications on light-emitting diodes. Here, we suppress the ACQ phenomena of GQDs by reducing the size and converting GQDs into aggregation-induced emission (AIE)-active materials. As the size of GQDs is reduced from 5 to 1 nm, their solid-state PL quantum yields (PLQYs) are improved from 0.5 to 2.5%, preventing ACQ. Two different rotor molecules, benzylamine (BA) and 4,4'-(1,2-diphenylethene-1,2-diyl)diphenol (TPE-DOH), are selectively functionalized by substituting carboxylic acid and carbonyl functional groups. All functionalized GQDs show AIE behaviors with significantly enhanced solid-state PLQYs, up to 16.8%. Afterglow measurements and theoretical calculations reveal that selective functionalization hinders inter- and intramolecular charge transfer, which enhances the fluorescence rate of GQDs and corresponding PLQY.
Collapse
Affiliation(s)
- Sukki Lee
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury (KINC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinho Lee
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury (KINC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury (KINC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
15
|
Nurnabi M, Gurusamy S, Wu JY, Lee CC, Sathiyendiran M, Huang SM, Chang CH, Chao I, Lee GH, Peng SM, Sathish V, Thanasekaran P, Lu KL. Aggregation-induced emission enhancement (AIEE) of tetrarhenium(I) metallacycles and their application as luminescent sensors for nitroaromatics and antibiotics. Dalton Trans 2023; 52:1939-1949. [PMID: 36691828 DOI: 10.1039/d2dt03408e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The self-assembly of tetrarhenium metallacycles [{Re(CO)3}2(μ-dhaq)(μ-N-N)]2 (3a, N-N = 1,3-bis(1-butylbenzimidazol-2-yl)benzene; 3b, N-N = 1,3-bis(1-octylbenzimidazol-2-yl)benzene), (H2-dhaq = 1,4-dihydroxy-9,10-anthraquinone) and [{Re(CO)3}2(μ-thaq)(μ-N-N)]2 (4, N-N = 1,3-bis(1-butylbenzimidazol-2-yl)benzene), (H2-thaq = 1,2,4-trihydroxy-9,10-anthraquinone) under solvothermal conditions is described. The metallacycles 3a,b and 4 underwent aggregation-induced emission enhancement (AIEE) in THF upon the incremental addition of water. TEM images revealed that metallacycle 3a in a 60% aqueous THF solution formed rectangular aggregates with a wide size distribution, while a 90% aqueous THF solution resulted in the formation of a mixture of nanorods and amorphous aggregates due to rapid and abrupt aggregation. UV-vis and emission spectral profiles supported the formation of nanoaggregates of metallacycles 3a,b and 4 upon the gradual addition of water to a THF solution containing metallacycles. Further studies indicated that these nanoaggregates were excellent probes for the sensitive and selective detection of nitro group containing picric acid (PA) derivatives as well as antibiotics.
Collapse
Affiliation(s)
| | - Shunmugasundaram Gurusamy
- PG and Research Department of Chemistry, V. O. Chidambaram College, Tuticorin - 628 008, Tamil Nadu, India
| | - Jing-Yun Wu
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan
| | - Chung-Chou Lee
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | | - Che-Hao Chang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Ito Chao
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Gene-Hsiang Lee
- Department of Chemistry, National Taiwan University, Taipei 107, Taiwan
| | - Shie-Ming Peng
- Department of Chemistry, National Taiwan University, Taipei 107, Taiwan
| | - Veerasamy Sathish
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam - 638 401, India
| | | | - Kuang-Lieh Lu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan. .,Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
16
|
Cheon HJ, Woo SJ, Baek SH, Lee JH, Kim YH. Dense Local Triplet States and Steric Shielding of a Multi-Resonance TADF Emitter Enable High-Performance Deep-Blue OLEDs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207416. [PMID: 36222388 DOI: 10.1002/adma.202207416] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Indexed: 05/12/2023]
Abstract
Multi-resonance thermally activated delayed fluorescence (MR-TADF) molecules based on boron and nitrogen atoms are emerging as next-generation blue emitters for organic light-emitting diodes (OLEDs) due to their narrow emission spectra and triplet harvesting properties. However, intermolecular aggregation stemming from the planar structure of typical MR-TADF molecules that leads to concentration quenching and broadened spectra limits the utilization of the full potential of MR-TADF emitters. Herein, a deep-blue MR-TADF emitter, pBP-DABNA-Me, is developed to suppress intermolecular interactions effectively. Furthermore, photophysical investigation and theoretical calculations reveal that adding biphenyl moieties to the core body creates dense local triplet states in the vicinity of S1 and T1 energetically, letting the emitter harvest excitons efficiently. OLEDs based on pBP-DABNA-Me show a high external quantum efficiency (EQE) of 23.4% and a pure-blue emission with a Commission Internationale de L'Eclairage (CIE) coordinate of (0.132, 0.092), which are maintained even at a high doping concentration of 100 wt%. Furthermore, by incorporating a conventional TADF sensitizer, deep-blue OLEDs with a CIE value of (0.133, 0.109) and an extremely high EQE of 30.1% are realized. These findings provide insight into design strategies for developing efficient deep-blue MR-TADF emitters with fast triplet upconversion and suppressed self-aggregation.
Collapse
Affiliation(s)
- Hyung-Jin Cheon
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seung-Je Woo
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Hyun Baek
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Jeong-Hwan Lee
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, Republic of Korea
- 3D Convergence Center, Inha University, Incheon, 22212, Republic of Korea
| | - Yun-Hi Kim
- Department of Chemistry and RINS, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
17
|
Mazumdar AK, Nanda GP, Yadav N, Deori U, Acharyya U, Sk B, Rajamalli P. Thermally activated delayed fluorescence (TADF) emitters: sensing and boosting spin-flipping by aggregation. Beilstein J Org Chem 2022; 18:1177-1187. [PMID: 36128432 PMCID: PMC9475190 DOI: 10.3762/bjoc.18.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Metal-free organic emitters with thermally activated delayed fluorescence (TADF) characteristics are emerging due to the potential applications in optoelectronic devices, time-resolved luminescence imaging, and solid-phase sensing. Herein, we synthesized two (4-bromobenzoyl)pyridine (BPy)-based donor-acceptor (D-A) compounds with varying donor size and strength: the emitter BPy-pTC with tert-butylcarbazole (TC) as the donor and BPy-p3C with bulky tricarbazole (3C) as the donor unit. Both BPy-pTC and BPy-p3C exhibited prominent emission with TADF properties in solution and in the solid phase. The stronger excited-state charge transfer was obtained for BPy-p3C due to the bulkier donor, leading to a more twisted D-A geometry than that of BPy-pTC. Hence, BPy-p3C exhibited aggregation-induced enhanced emission (AIEE) in a THF/water mixture. Interestingly, the singlet-triplet energy gap (ΔE ST) was reduced for both compounds in the aggregated state as compared to toluene solution. Consequently, a faster reverse intersystem crossing rate (k RISC) was obtained in the aggregated state, facilitating photon upconversion, leading to enhanced delayed fluorescence. Further, the lone-pair electrons of the pyridinyl nitrogen atom were found to be sensitive to acidic protons. Hence, the exposure to acid and base vapors using trifluoroacetic acid (TFA) and triethylamine (TEA) led to solid-phase fluorescence switching with fatigue resistance. The current study demonstrates the role of the donor strength and size in tuning ΔE ST in the aggregated state as well as the relevance for fluorescence-based acid-base sensing.
Collapse
Affiliation(s)
- Ashish Kumar Mazumdar
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka, 560012, India
| | - Gyana Prakash Nanda
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka, 560012, India
| | - Nisha Yadav
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka, 560012, India
| | - Upasana Deori
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka, 560012, India
| | - Upasha Acharyya
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka, 560012, India
| | - Bahadur Sk
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka, 560012, India
| | - Pachaiyappan Rajamalli
- Materials Research Centre, Indian Institute of Science, C. V. Raman Road, Bangalore, Karnataka, 560012, India
| |
Collapse
|