1
|
Zhang RR, Ran XY, Yu KK, Zhao Y, Zhang LN, Lv XF, Zhang H, Yu XQ, Li K. Rational Design of NIR-II Fluorescence/Photoacoustic Nanosensor Tailored for Mechanisms of Diabetes-Related Breast Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415891. [PMID: 39757524 DOI: 10.1002/adma.202415891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/12/2024] [Indexed: 01/07/2025]
Abstract
Breast cancer (BC) is the second most common cause of cancer induced death worldwide. Current statistics has disclosed that the diabetic BC patients have significantly worse survival rate compared with nondiabetic BC patients. However, the specific mechanism is still being explored. Herein, a novel NIR-II nanosensor DNPS for nitric oxide (NO) with fluorescence/photoacoustic (FL/PA) imaging capability is developed to explore the mechanism by which diabetes promoting breast cancer progression. In diabetic BC model, DNPS exhibits great advantages of low intrinsic background, high sensitivity, and deep tissue penetration and successfully confirmed the expression level of NO is higher than BC model, indicating that diabetes causes elevated nitric oxide levels in the tumor microenvironment. RNA-seq analysis results show that hyperglycemia caused by diabetes leads to weakened immune response and initiates the transcription and translation of the inducible nitric oxide synthase (iNOS) gene to produce NO. Besides, the increased expression of carcinogens related to Nitric oxide synthase 2 (Nos2), such as Spp1, Mmp11, and Kitl, causes breast cancer to develop more rapidly. Here, NIR-II imaging probe is applied first to study diabetes-related breast cancer and certain reference value is provided for subsequent research on the mechanism of diabetes promoting the progression of breast cancer.
Collapse
Affiliation(s)
- Rui-Rui Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiao-Yun Ran
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Kang-Kang Yu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yu Zhao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Li-Na Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiao-Fang Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hong Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiao-Qi Yu
- Department of Chemistry, Xihua University, Chengdu, 610039, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
2
|
Lian J, Li M, Duan M, Sun Y, Wang Z, Guo X, Li J, Gao G, Li K. NK-92 cells labeled with Fe 3O 4-PEG-CD56/Avastin@Ce6 nanoprobes for the targeted treatment and noninvasive therapeutic evaluation of breast cancer. J Nanobiotechnology 2024; 22:313. [PMID: 38840120 PMCID: PMC11151526 DOI: 10.1186/s12951-024-02599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Adoptive cellular immunotherapy as a promising and alternative cancer therapy platform is critical for future clinical applications. Natural killer (NK) cells have attracted attention as an important type of innate immune regulatory cells that can rapidly kill multiple adjacent cancer cells. However, these cells are significantly less effective in treating solid tumors than in treating hematological tumors. Herein, we report the synthesis of a Fe3O4-PEG-CD56/Avastin@Ce6 nanoprobe labeled with NK-92 cells that can be used for adoptive cellular immunotherapy, photodynamic therapy and dual-modality imaging-based in vivo fate tracking. The labeled NK-92 cells specifically target the tumor cells, which increases the amount of cancer cell apoptosis in vitro. Furthermore, the in vivo results indicate that the labeled NK-92 cells can be used for tumor magnetic resonance imaging and fluorescence imaging, adoptive cellular immunotherapy, and photodynamic therapy after tail vein injection. These data show that the developed multifunctional nanostructure is a promising platform for efficient innate immunotherapy, photodynamic treatment and noninvasive therapeutic evaluation of breast cancer.
Collapse
Affiliation(s)
- Jingge Lian
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 201600, P.R. China
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
| | - Meng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Meng Duan
- Department of Instrument Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaqian Sun
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 201600, P.R. China
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, P.R. China
| | - Zilin Wang
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 201600, P.R. China
| | - Xinyu Guo
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 201600, P.R. China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| | - Guo Gao
- Department of Instrument Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Kangan Li
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 201600, P.R. China.
| |
Collapse
|
3
|
Wang L, Li N, Wang W, Mei A, Shao J, Wang W, Dong X. Benzobisthiadiazole-Based Small Molecular Near-Infrared-II Fluorophores: From Molecular Engineering to Nanophototheranostics. ACS NANO 2024; 18:4683-4703. [PMID: 38295152 DOI: 10.1021/acsnano.3c12316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Organic fluorescent molecules with emission in the second near-infrared (NIR-II) biological window have aroused increasing investigation in cancer phototheranostics. Among these studies, Benzobisthiadiazole (BBT), with high electron affinity, is widely utilized as the electron acceptor in constructing donor-acceptor-donor (D-A-D) structured fluorophores with intensive near-infrared (NIR) absorption and NIR-II fluorescence. Until now, numerous BBT-based NIR-II dyes have been employed in tumor phototheranostics due to their exceptional structure tunability, biocompatibility, and photophysical properties. This review systematically overviews the research progress of BBT-based small molecular NIR-II dyes and focuses on molecule design and bioapplications. First, the molecular engineering strategies to fine-tune the photophysical properties in constructing the high-performance BBT-based NIR-II fluorophores are discussed in detail. Then, their biological applications in optical imaging and phototherapy are highlighted. Finally, the current challenges and future prospects of BBT-based NIR-II fluorescent dyes are also summarized. This review is believed to significantly promote the further progress of BBT-derived NIR-II fluorophores for cancer phototheranostics.
Collapse
Affiliation(s)
- Leichen Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Na Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Weili Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Anqing Mei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Wenjun Wang
- School of Physicals and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
4
|
Xie X, Wang K, Zeng J, Xu MY, Qu XH, Xiang ZB, Tou FF, Huang S, Han XJ. A novel polymer enabled by polymerized small molecule strategy for tumor photothermal and photodynamic therapy. J Nanobiotechnology 2023; 21:497. [PMID: 38124097 PMCID: PMC10734082 DOI: 10.1186/s12951-023-02272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) are effective method for tumor treatment. However, the limited variety and quantity of photothermal agents (PTAs) and photosensitizer (PSs) are still major challenges. Moreover, the cell apoptosis mechanism induced by PDT and PTT is still elusive. A fused-ring small molecule acceptor-donor acceptor' donor-acceptor (A-DA'D-A) type of Y5 (Scheme 1) has a narrow band-gap and strong light absorption. Herein, we used Y5 to polymerize with thiophene unit to obtain polymer PYT based on polymerized small molecule strategy, and PYT nanoparticles (PYT NPs) was prepared via one-step nanoprecipitation strategy with DSPE-PEG2000. PYT NPs had excellent biocompatibility, good photostability, high photothermal conversion efficiency (67%) and reactive oxygen species (ROS) production capacity under 808 nm laser irradiation (PYT NPs + NIR). In vitro and in vivo experiments revealed that PYT NPs + NIR had the ability to completely ablate tumor cells. It was demonstrated that cell apoptosis induced by PYT NPs + NIR was closely related to mitochondrial damage. This study provides valuable guidance for constructing high-performance organic PTAs and PSs for tumor treatment. Scheme 1 PYT enabled by polymerized small molecule strategy for tumor photothermal and photodynamic therapy.
Collapse
Affiliation(s)
- Xin Xie
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Ke Wang
- Department of Clinical Laboratory, Jiangxi Provincial Children's Hospital, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jie Zeng
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Miao-Yan Xu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xin-Hui Qu
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zheng-Bin Xiang
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fang-Fang Tou
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shaorong Huang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital &, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China.
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
5
|
Liu L, Pan Y, Ye L, Zhang T, Chen Y, Liang C, Chen D, Mou X, Dong X, Cai Y. Space and Bond Synergistic Conjugation Controlling Multiple-Aniline NIR-II Absorption for Photoacoustic Imaging Guided Photothermal Therapy. Adv Healthc Mater 2023; 12:e2301116. [PMID: 37541296 DOI: 10.1002/adhm.202301116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/21/2023] [Indexed: 08/06/2023]
Abstract
Currently, clinical photothermal therapy (PTT) is greatly limited by the poor tissue penetration of the excitation light sources in visible (390-780 nm) and first near-infrared (NIR-I, 780-900 nm) window. Herein, based on space and bond synergistic conjugation, a multiple-aniline organic small molecule (TPD), is synthesized for high-efficiency second near-infrared (NIR-II, 900-1700 nm) photoacoustic imaging guided PTT. With the heterogeneity of six nitrogen atoms in TPD, the lone electrons on the nitrogen atom and the π bond orbital on the benzene ring form multielectron conjugations with highly delocalized state, which endowed TPD with strong NIR-II absorption (maximum peak at 925 nm). Besides, according to the single molecular reorganization, the alkyl side chains on TPD make more free space for intramolecular motion to enhance the photothermal conversion ability. Forming TPD nanoparticles (NPs) in J-aggregation, they show a further bathochromic-shifted absorbance (maximum peak at 976 nm) as well as a high photothermal conversion efficiency (66.7%) under NIR-II laser irradiation. In vitro and in vivo experiments demonstrate that TPD NPs can effectively inhibit the growth of tumors without palpable side effects. The study provides a novel NIR-II multiple-aniline structure based on multielectron hyperconjugation, and opens a new design thought for photothermal agents.
Collapse
Affiliation(s)
- Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yi Pan
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Luyi Ye
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Tian Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yang Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Chen Liang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Dapeng Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
6
|
Dunn B, Hanafi M, Hummel J, Cressman JR, Veneziano R, Chitnis PV. NIR-II Nanoprobes: A Review of Components-Based Approaches to Next-Generation Bioimaging Probes. Bioengineering (Basel) 2023; 10:954. [PMID: 37627839 PMCID: PMC10451329 DOI: 10.3390/bioengineering10080954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Fluorescence and photoacoustic imaging techniques offer valuable insights into cell- and tissue-level processes. However, these optical imaging modalities are limited by scattering and absorption in tissue, resulting in the low-depth penetration of imaging. Contrast-enhanced imaging in the near-infrared window improves imaging penetration by taking advantage of reduced autofluorescence and scattering effects. Current contrast agents for fluorescence and photoacoustic imaging face several limitations from photostability and targeting specificity, highlighting the need for a novel imaging probe development. This review covers a broad range of near-infrared fluorescent and photoacoustic contrast agents, including organic dyes, polymers, and metallic nanostructures, focusing on their optical properties and applications in cellular and animal imaging. Similarly, we explore encapsulation and functionalization technologies toward building targeted, nanoscale imaging probes. Bioimaging applications such as angiography, tumor imaging, and the tracking of specific cell types are discussed. This review sheds light on recent advancements in fluorescent and photoacoustic nanoprobes in the near-infrared window. It serves as a valuable resource for researchers working in fields of biomedical imaging and nanotechnology, facilitating the development of innovative nanoprobes for improved diagnostic approaches in preclinical healthcare.
Collapse
Affiliation(s)
- Bryce Dunn
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA (R.V.)
| | - Marzieh Hanafi
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA (R.V.)
| | - John Hummel
- Department of Physics, George Mason University, Fairfax, VA 22030, USA
| | - John R. Cressman
- Department of Physics, George Mason University, Fairfax, VA 22030, USA
| | - Rémi Veneziano
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA (R.V.)
| | - Parag V. Chitnis
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA (R.V.)
| |
Collapse
|
7
|
Gao J, Luan T, Lv J, Yang M, Li H, Yuan Z. An oxygen-carrying and lysosome-targeting BODIPY derivative for NIR bioimaging and enhanced multimodal therapy against hypoxic tumors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112666. [PMID: 36842340 DOI: 10.1016/j.jphotobiol.2023.112666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Cancer treatment modalities have gradually shifted from monotherapies to multimodal therapies. It is still a challenge to develop a synergistic chemo-phototherapy system with relieving tumor hypoxia, specific targeting, and real-time fluorescence tracking. In this study, we designed a multifunctional BODIPY derivative, FBD-M, for synergistic chemo-phototherapy against hypoxic tumors. FBD-M was composed of four parts: 1) The BODIPY fluorophore selected as a theranostic core, 2) A pentafluorobenzene group modified on meso-BODIPY to carry oxygen, 3) A morpholine group hooked to one side of BODIPY served as a lysosome-targeting unit for enhancing antitumor effect, and 4) An aromatic nitrogen mustard group introduced on other side of BODIPY to achieve chemotherapy. After introducing the morpholine and aromatic nitrogen mustard in BODIPY, the conjugate system of BODIPY was also expanded to realize near-infrared (NIR) phototherapy. Finally, FBD-M was obtained by a rational design, which possessed with NIR absorbance and emission, photosensitive activity, oxygen-carrying capability for relieving tumor hypoxia, high photothermal conversion efficiency, good photostability, lysosome targeting, low toxicity, and synergistic chemo-phototherapy against hypoxic tumors. FBD-M had been successfully applied for anticancer in vitro and in vivo. Our study demonstrates that FBD-M can serve as an ideal multifunctional theranostic agents.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou 563003, PR China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, PR China
| | - Tianjiao Luan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou 563003, PR China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, PR China
| | - Jiajia Lv
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou 563003, PR China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, PR China
| | - Mingyan Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou 563003, PR China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, PR China
| | - Hongyu Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou 563003, PR China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, PR China
| | - Zeli Yuan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou 563003, PR China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, PR China.
| |
Collapse
|
8
|
Li L, Ma X, Peng Y, Yin J, Guissi NEI, Wang Y. Bright Asymmetric Shielding Strategy-Based NIR-II Probes for Angiography and Localized Photothermal Therapy. ACS APPLIED BIO MATERIALS 2023; 6:1639-1649. [PMID: 36971702 DOI: 10.1021/acsabm.3c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Fluorescent probes with fluorescence emission in the NIR-II window have been widely studied due to increased imaging depth. However, the currently reported NIR-II fluorescent probes present some disadvantages, such as complicated synthesis routes and low fluorescence quantum yields (QYs). The shielding strategy has been used in the development of NIR-II probes to improve their QYs. So far, this strategy has only been used for the symmetric NIR-II probes, especially those based on the benzo[1,2-c:4,5-c']bis([1,2,5]thiadiazole) (BBTD) skeleton. This work reports the synthesis of a series of asymmetric NIR-II probes based on shielding strategies accompanied by simple synthetic routes, high synthetic yields (above 90%), high QYs, and large Stoke shifts. Furthermore, the use of d-α-tocopheryl polyethylene glycol succinate (TPGS) as a surfactant for an NIR-II fluorescence probe (NT-4) improved its water solubility. In vivo studies showed that TPGS-NT-4 NPs with a high QY (3.46%) achieve high-resolution angiography and efficient local photothermal therapy, while displaying good biocompatibility. Hence, we combined angiography and local photothermal therapy to improve the tumor uptake of nanophotothermal agents while reducing their damage to normal tissues.
Collapse
|
9
|
Sun W, Wang X, Cheng Z, Wang X, Fan N, Dong P, Tong MQ, Liu Y, Sun W. Phototheranostics for NIR fluorescence image guided PDT/PTT with extended conjugation and enhanced TICT. Biomed Pharmacother 2023; 158:114071. [PMID: 36525820 DOI: 10.1016/j.biopha.2022.114071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Introducing donor and acceptor into conjugated system can facilitate the intersystem crossing (ISC) rate to increase the generation of ROS. Twisted intramolecular charge transfer (TICT) state could favor enhance the nonradiative transition and photothermal conversion efficiency (PCE). Herein, diketopyrrolopyrrole (DPP) core functionalized benzene (PDDP), thiophene (TDPP), triphenylamine-conjugated benzene (TPA-PDDP) and thiophene (TPA-TDPP) derivatives were designed and synthesized. Electrochemistry experiments revealed the heavy atom effect and the introduction of triphenylamine reduced the energy level of TPA-TDPP and improved the ability to generate 1O2 (1O2 QY = 50%). In addition, in the aggregated state, introduction of thiophene, triphenylamine, and long alkyl chains promoted the twisting effect, preventing the intermolecular π-π interaction and enhancing the PCE of TPA-TDPP (38.7%). In vivo fluorescence imaging showed that TPA-TDPP NPs can target the tumor site with the enhanced permeability and retention (EPR) effect and presented excellent synergistic photodynamic/photothermal therapy.
Collapse
Affiliation(s)
- Weitao Sun
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xuefeng Wang
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Zhenyuan Cheng
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Xiaoyue Wang
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Na Fan
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Pingxuan Dong
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Ming Qiong Tong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Yanling Liu
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China
| | - Wan Sun
- Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, Dezhou 253023, China.
| |
Collapse
|
10
|
Wu Y, Hu D, Gao D, Liu C, Zheng H, Sheng Z. Miniature NIR-II Nanoprobes for Active-Targeted Phototheranostics of Brain Tumors. Adv Healthc Mater 2022; 11:e2202379. [PMID: 36314394 DOI: 10.1002/adhm.202202379] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Indexed: 01/28/2023]
Abstract
Nanoprobes (NPs) in the second near-infrared biowindow (NIR-II, 1000-1700 nm) are developed and widely used in cancer phototheranostics. However, most NIR-II NPs exhibit low phototheranostic efficiency due to their tedious synthetic routes, large particle sizes (>20 nm), and lack of active targeting properties. Here, miniature NIR-II NPs, named HSA-ICG-iRGD, for active-targeted NIR-II phototheranostics of brain tumors are reported. The HSA-ICG-iRGD probes are designed based on hydrophobic interactions as well as hydrogen bonds between albumin and indocyanine green derivatives (ICG-iRGD) via molecular docking. The as-prepared NPs have a compact size of 10 nm and show tumor-targeting ability by specifically binding to αv β3 integrin receptors which are highly expressed on the surface of brain tumor cells via iRGD peptides. The HSA-ICG-iRGD NPs are then applied to perform active-targeted NIR-II fluorescence imaging, resulting in a signal-to-background ratio of 6.85 in orthotopic glioma mouse models. Under the selected laser irradiation of 808 nm, the photothermal effect of HSA-ICG-iRGD extends the survival of the tumor-bearing mice to 55 days, significantly longer than that of the control group (30 days). These results highlight the potential of miniature NPs for active-targeted NIR-II fluorescence imaging and phototherapy of brain tumors.
Collapse
Affiliation(s)
- Yayun Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS key laboratory of health informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS key laboratory of health informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS key laboratory of health informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Chunchen Liu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Printed Organic Electronics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS key laboratory of health informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS key laboratory of health informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| |
Collapse
|
11
|
Fan F, Hou Y, Zhang Y, Zeng Y, Zhang Y, Zhang S, Meng X, Wang X. Tumor imaging and photothermal therapy in second near infrared window: A systematic review and meta-analysis. Front Oncol 2022; 12:987491. [PMID: 36158674 PMCID: PMC9493463 DOI: 10.3389/fonc.2022.987491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSecond near-infrared window (NIR-II, 1000-1700 nm) technology for tumor imaging and photothermal therapy (PTT) is an innovative method for tumor diagnosis and treatment. The NIR-II probe can specifically identify tumor cells, and effectively convert light energy into heat energy under the irradiation of NIR laser, thus achieving the integration of non-invasive tumor diagnosis and treatment. In the present study, we conducted a systematic review and meta-analysis of preclinical investigations to corroborate the efficacy and safety of photothermal therapy.MethodsRelevant preclinical data were retrieved by searching PubMed, Web of Science, CNKI, WANFANG and VIP information databases. And the acquired data were analyzed by RevMan Version 5.3 software.ResultsAccording to the inclusion criteria, forty-two articles relating to NIR-II tumor imaging and PTT were recruited for further in-depth analysis. The NIR-II photoacoustic and fluorescence imaging could quickly and accurately identify tumor in mice, manifesting higher signal intensity on tumor site than that of normal tissue. After PTT, the tumor volume of mice decreased miraculously [RR=8.49, 95%CI (4.64, 15.55), P<0.00001], and even disappeared completely [RR=7.01, 95%CI (3.04, 16.13), P<0.00001] with no potential risk of affecting the blood routine.ConclusionsPTT guided by NIR-II imaging can effectively diagnose the tumor lesion and eliminate it with the advantages of non-invasive and higher biosafety.
Collapse
Affiliation(s)
- Fuhan Fan
- School of Pharmacy, Research Institute of Integrated TCM & Western Medicine Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Hou
- School of Pharmacy, Research Institute of Integrated TCM & Western Medicine Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yating Zhang
- School of Pharmacy, Research Institute of Integrated TCM & Western Medicine Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Zeng
- School of Pharmacy, Research Institute of Integrated TCM & Western Medicine Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, Research Institute of Integrated TCM & Western Medicine Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaobo Wang, ; Xianli Meng,
| | - Xiaobo Wang
- School of Pharmacy, Research Institute of Integrated TCM & Western Medicine Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaobo Wang, ; Xianli Meng,
| |
Collapse
|
12
|
Yang N, Song S, Liu C, Ren J, Wang X, Zhu S, Yu C. An aza-BODIPY-based NIR-II luminogen enables efficient phototheranostics. Biomater Sci 2022; 10:4815-4821. [PMID: 35856473 DOI: 10.1039/d2bm00670g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fabrication of a high-performance second near-infrared (NIR-II) biological window fluorophore is in urgent need for precise diagnosis and treatment of cancer. Nevertheless, the construction of phototherapeutic agents in the NIR-II region with excellent imaging performance and minimal side effects remains a big challenge due to the limited availability of core fluorophore candidates. In this study, a new NIR-II fluorescent probe, CB1, which is an aza-BODIPY core conjugated with bulky donors, was designed and synthesized. CB1 was further encapsulated in DSPE-PEG2000 to impart water solubility, which shows brighter NIR-II fluorescence and higher photostability than the clinically used indocyanine green (ICG). CB1 nanoparticles show deep tissue penetration and high imaging contrast in vivo. In addition, molecular conformation enables CB1 nanoparticles to exhibit good photothermal properties. Both in vitro and in vivo assessments confirm that CB1 nanoparticles could be utilized as distinguished theranostic agents for NIR-II fluorescence imaging and tumor growth inhibition with negligible side effects. Collectively, this work provides a promising approach for constructing a new platform for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Na Yang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China. .,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Shuang Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Chang Liu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China. .,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Jia Ren
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China. .,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Xin Wang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Cong Yu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China. .,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| |
Collapse
|
13
|
Zhang C, Wu J, Liu W, Zhang W, Lee CS, Wang P. New Xanthene Dyes with NIR-II Emission Beyond 1200 nm for Efficient Tumor Angiography and Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202078. [PMID: 35730913 DOI: 10.1002/smll.202202078] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/29/2022] [Indexed: 05/25/2023]
Abstract
Fluorescence (FL) bioimaging in the second near-infrared window (NIR-II, 1000-1700 nm) provides improved imaging quality and high resolution for diagnosis of deep-seated tumors. However, integrating FL bioimaging and photothermal therapy (PTT) in a single photoactive molecule exhibits a great challenge because a dramatic increase of PTT in the NIR-II window benefitting from the nonradiative decay will sacrifice the fluorescence brightness that is unfavorable for FL bioimaging. Therefore, balancing the radiative decay and nonradiative decay is an effective and rational design strategy. Herein, four NIR-II xanthene dyes (CL1-CL4) are synthesized with maximal emission beyond 1200 nm under 1064 nm excitation. CL4 exhibits the largest fluorescence quantum yield and a significant fluorescence enhancement after complexation with fetal bovine serum (FBS). As-prepared CL4/FBS has a maximal emission of 1235 nm and a high photothermal conversion efficiency of 36% under 1064 nm excitation. Bright and refined tumor vessels with a fine resolution of 0.23 mm can be clearly distinguished by CL4/FBS. In vivo studies show that a balanced utilization of fluorescence and photothermy in the NIR-II window is successfully achieved with superior biocompatibility. This efficient strategy provides promising avenue for precise theranostics of deep tumors.
Collapse
Affiliation(s)
- Chuangli Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Leistner AL, Pianowski Z. Smart photochromic materials triggered with visible light. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna-Lena Leistner
- KIT: Karlsruher Institut fur Technologie Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| | - Zbigniew Pianowski
- Karlsruher Institut fur Technologie Fakultat fur Chemie und Biowissenschaften Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| |
Collapse
|