1
|
Mai S, Sun J, Fang Z, Xiao GB, Cao J. Metal Clusters Based Multifunctional Materials for Solar Cells. Chemistry 2024:e202303973. [PMID: 38179822 DOI: 10.1002/chem.202303973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
As a multifunctional material, metal clusters have recently received some attention for their application in solar cells.This review delves into the multifaceted role of metal clusters in advancing solar cell technologies, covering diverse aspects from electron transport and interface modification to serving as molecular precursors for inorganic materials and acting as photosensitizers in metal-cluster sensitized solar cells (MCSSCs). The studies conducted by various researchers illustrate the crucial impact of metal clusters, such as gold nanoclusters (Au NCs), on enhancing solar cell efficiency through size-dependent effects, distinct interface behaviors, and tailored interface engineering. From optimizing charge transfer rates to improving light absorption and reducing carrier recombination, metal clusters prove instrumental in shaping the landscape of solar energy conversion.The promising performance of metal-cluster sensitized solar cells, coupled with their scalability and flexibility, positions them as a exciting avenue for future clean energy applications. The article concludes by emphasizing the need for continued interdisciplinary research and technological innovation to unlock the full potential of metal clusters in contributing to sustainable and high-performance solar cells.
Collapse
Affiliation(s)
- Sibei Mai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jia Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zihan Fang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guo-Bin Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
2
|
Segura-Sanchis E, Moreno A, Ramiro-Manzano F, Fenollosa R, Feliz M, Atienzar P. Optoelectronic properties of octahedral molybdenum cluster-based materials at a single crystal level. Dalton Trans 2023; 52:17818-17825. [PMID: 37971064 DOI: 10.1039/d3dt02501b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Octahedral molybdenum (Mo6) clusters constitute suitable building blocks for the design of promising single crystal materials in the field of optoelectronics. Here, we prepared single crystals composed of hydroxo Mo6X8 (X = Br, Cl) cluster complexes interconnected by H-bonding interactions with water molecules and protons. The optoelectronic responses and the absorption and emission spectra of these cluster-based single crystals were acquired upon light irradiation, and they show dependency on the nature of the halogens, with the brominated cluster being the most conductive. A fast photoelectrical response was recorded and it showed remarkable stability after multiple illumination on/off cycles. The results obtained provide relevant information for the development of photonic and optoelectronic devices, sensors and photocatalysts.
Collapse
Affiliation(s)
- Elena Segura-Sanchis
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Ana Moreno
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Fernando Ramiro-Manzano
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Roberto Fenollosa
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Marta Feliz
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| | - Pedro Atienzar
- Instituto de Tecnología Química, Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avd. de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
3
|
Vorotnikov YA, Vorotnikova NA, Shestopalov MA. Silica-Based Materials Containing Inorganic Red/NIR Emitters and Their Application in Biomedicine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5869. [PMID: 37687562 PMCID: PMC10488461 DOI: 10.3390/ma16175869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
The low absorption of biological substances and living tissues in the red/near-infrared region (therapeutic window) makes luminophores emitting in the range of ~650-1350 nm favorable for in vitro and in vivo imaging. In contrast to commonly used organic dyes, inorganic red/NIR emitters, including ruthenium complexes, quantum dots, lanthanide compounds, and octahedral cluster complexes of molybdenum and tungsten, not only exhibit excellent emission in the desired region but also possess additional functional properties, such as photosensitization of the singlet oxygen generation process, upconversion luminescence, photoactivated effects, and so on. However, despite their outstanding functional applicability, they share the same drawback-instability in aqueous media under physiological conditions, especially without additional modifications. One of the most effective and thus widely used types of modification is incorporation into silica, which is (1) easy to obtain, (2) biocompatible, and (3) non-toxic. In addition, the variety of morphological characteristics, along with simple surface modification, provides room for creativity in the development of various multifunctional diagnostic/therapeutic platforms. In this review, we have highlighted biomedical applications of silica-based materials containing red/NIR-emitting compounds.
Collapse
Affiliation(s)
- Yuri A. Vorotnikov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia;
| | | | - Michael A. Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090 Novosibirsk, Russia;
| |
Collapse
|
4
|
Carrasco I, Ehni P, Ebert M, Dumait N, Taupier G, Amela-Cortes M, Roiland C, Cordier S, Knöller JA, Jacques E, Laschat S, Molard Y. Game of Crowns: Na + Is Coming! Red NIR-Emissive Hybrid Liquid Crystals Containing Discotic Crown Ethers and Na 2Mo 6X 8iCl 6 (X i = Cl or Br). ACS APPLIED MATERIALS & INTERFACES 2023; 15:39752-39764. [PMID: 37566407 DOI: 10.1021/acsami.3c08441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Molecular or supramolecular materials that can self-organize into columns such as discotic liquid crystals are of interest for several applications in the field of optoelectronics. We show in this work that red near-infrared (NIR)-emissive metal cluster compounds of general formula Na2Mo6X8iCl6 (Xi = Cl or Br) can be readily complexed with discotic liquid crystals containing a crown ether. Three cavity sizes have been tested with crown ethers bearing 4, 5, or 6 oxygen atoms. In all cases, 1:1 complexes were formed, thanks to the well-known supramolecular interactions existing between the Na+ cations of the metal cluster salt and the crown ether derivatives. All obtained hybrids are homogeneous, emit in the red NIR region, and show liquid crystalline properties on a wider temperature range than their precursors. Charge transport properties have been investigated by using a space charge limited current device. Obtained results demonstrate that metal cluster compounds can enhance the charge carrier mobility by 5 orders of magnitude compared to the native discotic organic ligands. Considering that the presented organic crown ether derivatives are not the best candidates to design optoelectronic devices because of their inherently low conductivity, but that similar compounds were developed to design proton conductive porous framework, our results open promising perspectives for the use of metal cluster compounds in devices dedicated to such a field.
Collapse
Affiliation(s)
- Irene Carrasco
- Univ Rennes, CNRS, ISCR─UMR 6226, ScanMAT─UAR 2025, IETR─UMR6164, F-35000 Rennes, France
| | - Philipp Ehni
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Max Ebert
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Noée Dumait
- Univ Rennes, CNRS, ISCR─UMR 6226, ScanMAT─UAR 2025, IETR─UMR6164, F-35000 Rennes, France
| | - Gregory Taupier
- Univ Rennes, CNRS, ISCR─UMR 6226, ScanMAT─UAR 2025, IETR─UMR6164, F-35000 Rennes, France
| | - Maria Amela-Cortes
- Univ Rennes, CNRS, ISCR─UMR 6226, ScanMAT─UAR 2025, IETR─UMR6164, F-35000 Rennes, France
| | - Claire Roiland
- Univ Rennes, CNRS, ISCR─UMR 6226, ScanMAT─UAR 2025, IETR─UMR6164, F-35000 Rennes, France
| | - Stéphane Cordier
- Univ Rennes, CNRS, ISCR─UMR 6226, ScanMAT─UAR 2025, IETR─UMR6164, F-35000 Rennes, France
| | - Julius A Knöller
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Emmanuel Jacques
- Univ Rennes, CNRS, ISCR─UMR 6226, ScanMAT─UAR 2025, IETR─UMR6164, F-35000 Rennes, France
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Yann Molard
- Univ Rennes, CNRS, ISCR─UMR 6226, ScanMAT─UAR 2025, IETR─UMR6164, F-35000 Rennes, France
| |
Collapse
|
5
|
Zhang M, Grasset F, Masubuchi Y, Shimada T, Nguyen TKN, Dumait N, Renaud A, Cordier S, Berthebaud D, Halet JF, Uchikoshi T. Enhanced NH 3 Sensing Performance of Mo Cluster-MoS 2 Nanocomposite Thin Films via the Sulfurization of Mo 6 Cluster Iodides Precursor. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:478. [PMID: 36770439 PMCID: PMC9921185 DOI: 10.3390/nano13030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The high-performance defect-rich MoS2 dominated by sulfur vacancies as well as Mo-rich environments have been extensively studied in many fields, such as nitrogen reduction reactions, hydrogen evolution reactions, as well as sensing devices for NH3, which are attributed to the under-coordinated Mo atoms playing a significant role as catalytic sites in the defect area. In this study, the Mo cluster-MoS2 composite was creatively synthesized through a one-step sulfurization process via H2/H2S gas flow. The Mo6 cluster iodides (MIs) coated on the fluorine-doped tin oxide (FTO) glass substrate via the electrophoretic deposition method (i.e., MI@FTO) were used as a precursor to form a thin-film nanocomposite. Investigations into the structure, reaction mechanism, and NH3 gas sensing performance were carried out in detail. The results indicated that during the gas flowing, the decomposed Mo6 cluster iodides played the role of template and precursor, forming complicated Mo cluster compounds and eventually producing MoS2. These Mo cluster-MoS2 thin-film nanocomposites were fabricated and applied as gas sensors for the first time. It turns out that after the sulfurization process, the response of MI@FTO for NH3 gas increased three times while showing conversion from p-type to n-type semiconductor, which enhances their possibilities for future device applications.
Collapse
Affiliation(s)
- Meiqi Zhang
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Fabien Grasset
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France
| | - Yuji Masubuchi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Toshihiro Shimada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Thi Kim Ngan Nguyen
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- International Center for Young Scientists, ICYS-SENGEN, Global Networking Division, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Noée Dumait
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France
| | - Adèle Renaud
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France
| | - Stéphane Cordier
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France
| | - David Berthebaud
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jean-François Halet
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Tetsuo Uchikoshi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
- CNRS–Saint-Gobain–NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
6
|
Marchuk MV, Vorotnikov YA, Ivanov AA, Eltsov IV, Kuratieva NV, Shestopalov MA. A Neutral Heteroleptic Molybdenum Cluster trans-[{Mo6I8}(py)2I4]. Symmetry (Basel) 2022; 14:2117. [DOI: 10.3390/sym14102117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Despite that the chemistry of octahedral cluster complexes has been actively developed recently, there are still a lot of unexplored areas. For example, to date, only a few halide M6-clusters with N-heterocycles are known. Here, we obtained an apically heteroleptic octahedral iodide molybdenum cluster complex with pyridine ligands—trans-[{Mo6I8}(py)2I4] by the direct substitution of iodide apical ligands of [{Mo6I8}I6]2– in a pyridine solution. The compound co-crystalized with a monosubstituted form [{Mo6I8}(py)I5]– in the ratio of 1:4, and thus, can be described by the formula (pyH)0.2[{Mo6I8}(py)1.8I4.2]·1.8py. The composition was studied using XRPD, elemental analyses, and 1H-NMR and IR spectroscopies. According to the absorption and luminescence data, the partial substitution of apical ligands weakly affects optical properties.
Collapse
Affiliation(s)
- Margarita V. Marchuk
- Nikolaev Institute of Inorganic Chemistry of Siberian Branch of Russian Academy of Sciences, 3 Acad, Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Yuri A. Vorotnikov
- Nikolaev Institute of Inorganic Chemistry of Siberian Branch of Russian Academy of Sciences, 3 Acad, Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Anton A. Ivanov
- Nikolaev Institute of Inorganic Chemistry of Siberian Branch of Russian Academy of Sciences, 3 Acad, Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Ilia V. Eltsov
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia
| | - Natalia V. Kuratieva
- Nikolaev Institute of Inorganic Chemistry of Siberian Branch of Russian Academy of Sciences, 3 Acad, Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Michael A. Shestopalov
- Nikolaev Institute of Inorganic Chemistry of Siberian Branch of Russian Academy of Sciences, 3 Acad, Lavrentiev Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Nguyen NTK, Lebastard C, Wilmet M, Dumait N, Renaud A, Cordier S, Ohashi N, Uchikoshi T, Grasset F. A review on functional nanoarchitectonics nanocomposites based on octahedral metal atom clusters (Nb 6, Mo 6, Ta 6, W 6, Re 6): inorganic 0D and 2D powders and films. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:547-578. [PMID: 36212682 PMCID: PMC9542349 DOI: 10.1080/14686996.2022.2119101] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 05/29/2023]
Abstract
This review is dedicated to various functional nanoarchitectonic nanocomposites based on molecular octahedral metal atom clusters (Nb6, Mo6, Ta6, W6, Re6). Powder and film nanocomposites with two-dimensional, one-dimensional and zero-dimensional morphologies are presented, as well as film matrices from organic polymers to inorganic layered oxides. The high potential and synergetic effects of these nanocomposites for biotechnology applications, photovoltaic, solar control, catalytic, photonic and sensor applications are demonstrated. This review also provides a basic level of understanding how nanocomposites are characterized and processed using different techniques and methods. The main objective of this review would be to provide guiding significance for the design of new high-performance nanocomposites based on transition metal atom clusters.
Collapse
Affiliation(s)
- Ngan T. K. Nguyen
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- International Center for Young Scientists, ICYS-Sengen, Global Networking Division, NIMS, Tsukuba, Japan
| | - Clément Lebastard
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | - Maxence Wilmet
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
- Saint Gobain Research Paris, Aubervilliers, France
| | - Noée Dumait
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | - Adèle Renaud
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | | | - Naoki Ohashi
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Research Center for Functional Materials, NIMS, Tsukuba, Japan
| | - Tetsuo Uchikoshi
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Research Center for Functional Materials, NIMS, Tsukuba, Japan
| | - Fabien Grasset
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| |
Collapse
|