1
|
Zhang H, Liang F, Yang L, Gao Z, Liang K, Liu S, Ye Y, Yu H, Chen W, Kang Y, Sun H. Superior AlGaN/GaN-Based Phototransistors and Arrays with Reconfigurable Triple-Mode Functionalities Enabled by Voltage-Programmed Two-Dimensional Electron Gas for High-Quality Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405874. [PMID: 38924239 DOI: 10.1002/adma.202405874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
High-quality imaging units are indispensable in modern optoelectronic systems for accurate recognition and processing of optical information. To fulfill massive and complex imaging tasks in the digital age, devices with remarkable photoresponsive characteristics and versatile reconfigurable functions on a single-device platform are in demand but remain challenging to fabricate. Herein, an AlGaN/GaN-based double-heterostructure is reported, incorporated with a unique compositionally graded AlGaN structure to generate a channel of polarization-induced two-dimensional electron gas (2DEGs). Owing to the programmable feature of the 2DEGs by the combined gate and drain voltage inputs, with a particular capability of electron separation, collection and storage under different light illumination, the phototransistor shows reconfigurable multifunctional photoresponsive behaviors with superior characteristics. A self-powered mode with a responsivity over 100 A W-1 and a photoconductive mode with a responsivity of ≈108 A W-1 are achieved, with the ultimate demonstration of a 10 × 10 device array for imaging. More intriguingly, the device can be switched to photoelectric synapse mode, emulating synaptic functions to denoise the imaging process while prolonging the image storage ability. The demonstration of three-in-one operational characteristics in a single device offers a new path toward future integrated and multifunctional imaging units.
Collapse
Affiliation(s)
- Haochen Zhang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Fangzhou Liang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Yang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Zhixiang Gao
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Kun Liang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Si Liu
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Yankai Ye
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Huabin Yu
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Chen
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Kang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Haiding Sun
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Xu W, Li B, Wu Y, Dong Z, Zhang K, Wang Q, Feng S, Lu W. Ultrahigh Bipolar Photoresponse in a Self-Powered Ultraviolet Photodetector Based on GaN and In/Sn-Doped Ga 2O 3 Nanowires pn junction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35303-35314. [PMID: 38934377 DOI: 10.1021/acsami.4c04812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Self-powered ultraviolet photodetectors with bipolar photoresponse have great potential in the fields of ultraviolet optical communication, all-optical controlled artificial synapses, high-resolution ultraviolet imaging equipment, and multiband photoelectric detection. However, the current low optoelectronic performance limits the development of such polar switching devices. Here, we construct a self-powered ultraviolet photodetector based on GaN and In/Sn-doped Ga2O3 (IGTO) nanowires (NWs) pn junction structure. This unique nanowire/thin film structure allows GaN and IGTO to dominate the absorption of light at different wavelengths, resulting in a highly bipolar photoresponse. The device has a responsivity of 2.04 A/W and a normalized detectivity of 7.18 × 1013 Jones at 254 nm and a responsivity of -2.09 A/W and a normalized detectivity of -7 × 1013 Jones at 365 nm, both at zero bias. In addition, it has an extremely high Ilight/Idark ratio of 1.05 × 105 and ultrafast response times of 2.4/1.9 ms (at 254 nm) and 5.7/5.2 ms (at 365 nm). These excellent properties are attributed to the high specific surface area of the one-dimensional nanowire structure and the abundant voids generated by the nanowire network to enhance the absorption of light, and the p-n junction structure enables the rapid separation and transfer of photogenerated electron-hole pairs. Our findings provide a feasible strategy for high-performance wavelength-controlled polarity switching devices.
Collapse
Affiliation(s)
- Wei Xu
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Li
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yutong Wu
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhiyu Dong
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Kun Zhang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Qingshan Wang
- Chongqing Public Security Bureau, Chongqing 400000, China
| | - Shuanglong Feng
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Wenqiang Lu
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
3
|
Gao C, Wang Y, Fu S, Xia D, Han Y, Ma J, Xu H, Li B, Shen A, Liu Y. High-Performance Solar-Blind Ultraviolet Photodetectors Based on β-Ga 2O 3 Thin Films Grown on p-Si(111) Substrates with Improved Material Quality via an AlN Buffer Layer Introduced by Metal-Organic Chemical Vapor Deposition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38612-38622. [PMID: 37531140 DOI: 10.1021/acsami.3c07876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
We have achieved significantly improved device performance in solar-blind deep-ultraviolet photodetectors fabricated from β-Ga2O3 thin films grown via metal-organic chemical vapor deposition (MOCVD) on p-Si(111) substrates by improving material quality through the use of an AlN buffer layer. High-structural-quality β-Ga2O3 films with a (-201) preferred orientation are obtained after the introduction of the AlN buffer. Under 3 V bias, the dark current reaches a minimum of 45 fA, and the photo-to-dark current ratio (PDCR) reaches 8.5 × 105 in the photodetector with the metal-semiconductor-metal (MSM) structure. The peak responsivity and detectivity are 38.8 A/W and 2.27 × 1015 cm·Hz1/2/W, respectively, which are 16.5 and 230 times that without the buffer layer. Additionally, benefiting from the introduction of the AlN layer, the photodetection performance of the β-Ga2O3/AlN/Si heterojunction is significantly improved. The PDCR, peak responsivity, and detectivity for the β-Ga2O3/AlN/p-Si photodetector at 5 V bias are 2.7 × 103, 11.84 A/W, and 8.31 × 1013 cm·Hz1/2/W, respectively. The improved structural quality of β-Ga2O3 is mainly attributed to the decreased in-plane lattice mismatch of 2.3% for β-Ga2O3(-201)/AlN(002) compared to that of 20.83% for β-Ga2O3(-201)/Si(111), as well as the elimination of the native amorphous SiOx surface layer on the Si substrate during the initial growth of oxide thin films.
Collapse
Affiliation(s)
- Chong Gao
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yuefei Wang
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Shihao Fu
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Danyang Xia
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yurui Han
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Jiangang Ma
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Haiyang Xu
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Bingsheng Li
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Aidong Shen
- Department of Electrical Engineering, The City College of New York, New York, New York 10031, United States
| | - Yichun Liu
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
4
|
Ye L, Zhou S, Xiong Y, Tang J, Wang X, Li X, Pang D, Li H, Zhang H, Ye L, Cui Y, Li W. Self-powered Pt/a-Ga 2O 3/ITO vertical Schottky junction solar-blind photodetector with excellent detection performance. OPTICS EXPRESS 2023; 31:28200-28211. [PMID: 37710880 DOI: 10.1364/oe.494216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
Self-powered solar-blind photodetectors (PDs) are promising for military and civilian applications owing to convenient operation, easy preparation, and weak-light sensitivity. In the present study, the solar-blind deep-ultraviolet (DUV) photodetector based on amorphous Ga2O3 (a-Ga2O3) and with a simple vertical stack structure is proposed by applying the low-cost magnetron sputtering technology. By tuning the thickness of the amorphous Ga2O3 layer, the device exhibits excellent detection performance. Under 3 V reverse bias, the photodetector achieves a high responsivity of 671A/W, a high detectivity of 2.21 × 1015 Jones, and a fast response time of 27/11 ms. More extraordinary, with the help of the built-in electric field at the interface, the device achieves an excellent performance in detection when self-powered, with an ultrahigh responsivity of 3.69 A/W and a fast response time of 2.6/6.6 ms under 254 nm light illumination. These results demonstrate its superior performance to most of the self-powered Schottky junction UV photodetectors reported to date. Finally, the Pt/a-Ga2O3/ITO Schottky junction photodiode detector is verified as a good performer in imaging, indicating its applicability in such fields as artificial intelligence, machine vision, and solar-blind imaging.
Collapse
|
5
|
Ouyang T, Zhao X, Xun X, Gao F, Zhao B, Bi S, Li Q, Liao Q, Zhang Y. Boosting Charge Utilization in Self-Powered Photodetector for Real-Time High-Throughput Ultraviolet Communication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301585. [PMID: 37271884 PMCID: PMC10427366 DOI: 10.1002/advs.202301585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/01/2023] [Indexed: 06/06/2023]
Abstract
Ultraviolet (UV) communication is a cutting-edge technology in communication battlefields, and self-powered photodetectors as their optical receivers hold great potential. However, suboptimal charge utilization has largely limited the further performance enhancement of self-powered photodetectors for high-throughput communication application. Herein, a self-powered Ti3 C2 Tx -hybrid poly(3,4 ethylenedioxythiophene):poly-styrene sulfonate (PEDOT:PSS)/ZnO (TPZ) photodetector is designed, which aims to boost charge utilization for desirable applications. The device takes advantage of photothermal effect to intensify pyro-photoelectric effect as well as the increased conductivity of the PEDOT:PSS, which significantly facilitated charge separation, accelerated charge transport, and suppressed interface charge recombination. Consequently, the self-powered TPZ photodetector exhibits superior comprehensive performance with high responsivity of 12.3 mA W-1 and fast response time of 62.2 µs, together with outstanding reversible and stable cyclic operation. Furthermore, the TPZ photodetector has been successfully applied in an integrated UV communication system as the self-powered optical receiver capable of real-time high-throughput information transmission with ASCII code under 9600 baud rate. This work provides the design insight of highly performing self-powered photodetectors to achieve high-efficiency optical communication in the future.
Collapse
Affiliation(s)
- Tian Ouyang
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Xuan Zhao
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Xiaochen Xun
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Fangfang Gao
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Bin Zhao
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Shuxin Bi
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Qi Li
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and TechnologyBeijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and TechnologiesSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| |
Collapse
|
6
|
Han Y, Wang Y, Xia D, Fu S, Gao C, Ma J, Xu H, Li B, Shen A, Liu Y. Rapid Response Solar Blind Deep UV Photodetector with High Detectivity Based On Graphene:N/βGa 2 O 3 :N/GaN p-i-n Heterojunction Fabricated by a Reversed Substitution Growth Method. SMALL METHODS 2023:e2300041. [PMID: 37096880 DOI: 10.1002/smtd.202300041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/23/2023] [Indexed: 05/03/2023]
Abstract
This work reports a high-detectivity solar-blind deep ultraviolet photodetector with a fast response speed, based on a nitrogen-doped graphene/βGa2 O3 /GaN p-i-n heterojunction. The i layer of βGa2 O3 with a Fermi level lower than the central level of the forbidden band of 0.2 eV is obtained by reversed substitution growth with oxygen replacing nitrogen in the GaN matrix, indicating the majority carrier is hole. X-ray diffractometershows that the transformation of GaN into βGa2 O3 with (-201) preferred orientation at temperature above 900 °C in an oxygen ambient. The heterojunction shows enhanced self-powered solar blind detection ability with a response time of 3.2 µs (rise)/0.02 ms (delay) and a detectivity exceeding 1012 Jones. Under a reverse bias of -5 V, the photoresponsivity is 8.3 A W-1 with a high Ilight /Idark ratio of over 106 and a detectivity of ≈9 × 1014 Jones. The excellent performance of the device is attributed to 1) the continuous conduction band without a potential energy barrier, 2) the larger built-in potential in the heterojunction because of the downward shift of Fermi energy level in β-Ga2 O3 , and 3) an enhanced built-in electric field in the βGa2 O3 due to introducing p-type graphene with a high hole concentration of up to ≈1020 cm-3 .
Collapse
Affiliation(s)
- Yurui Han
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yuefei Wang
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Danyang Xia
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Shihao Fu
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Chong Gao
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Jiangang Ma
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Haiyang Xu
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Bingsheng Li
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Aidong Shen
- Department of Electrical Engineering, The City College of New York, New York, NY, 10031, USA
| | - Yichun Liu
- Key Laboratory of UV Light Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|