1
|
Sun C, Deng Z, Liu X, Zhang F, Lian K, Zhao Y, Zhang H, Han J, Luo M. Highly efficient and stable Cs 3Mn 0.93Zn 0.07Br 5@SiO 2 for wide color gamut backlight displays. Dalton Trans 2024; 53:2153-2158. [PMID: 38189118 DOI: 10.1039/d3dt03874b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mn-based perovskites have become a new candidate material for backlight display applications. However, low efficiency and poor stability are the key problems limiting the application of Mn-based perovskites. In this work, Zn-doped and SiO2-encapsulated Cs3MnBr5, denoted as Cs3Mn0.93Zn0.07Br5@SiO2 (CMZBS), was successfully synthesized to improve the photoluminescence quantum yield (PLQY) and stability. After Zn doping, the PLQY increased from 51% to 72% due to the reduction in the energy transfer between [MnBr4]2-. The PLQY can be further improved to 80% after coating SiO2. Compared with Cs3MnBr5 (CMB), CMZBS showed better stability against thermal, air, light, and polar solvents (ethanol and isopropanol). In addition, a white LED (WLED) device with a CIE of (0.323, 0.325) was fabricated by integrating CMZBS and the red phosphor K2SiF6:Mn4+ on a 465 nm blue GaN chip, which exhibited a high luminous efficiency of 92 lm W-1 and excellent stability, demonstrating its great potential application in wide color gamut displays.
Collapse
Affiliation(s)
- Chun Sun
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Zhihui Deng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Xiaohui Liu
- Key Laboratory of Magnetism and Magnetic Materials Autonomous Region, Baotou Teachers' College, Inner Mongolia University of Science and Technology, 3 Kexue Road, Baotou, 014030, P.R. China
- Zhejiang Ruico Advanced Material Co., Ltd, No. 188 Liangshan Road, Huzhou, 313018, PR China
| | - Fuhao Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Kai Lian
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Yiwei Zhao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Hu Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Jiachen Han
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| | - Mingming Luo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China.
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, PR China
| |
Collapse
|
2
|
Sun C, Zhang H, Deng Z, Fan C, Liu X, Luo M, Zhao Y, Lian K. Metal-Ion-Doped Manganese Halide Hybrids with Tunable Emission for Advanced Anti-Counterfeiting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1890. [PMID: 37368320 DOI: 10.3390/nano13121890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
Stimuli-responsive luminescent materials have received great attention for their potential application in anti-counterfeiting and information encryption. Manganese halide hybrids have been considered an efficient stimuli-responsive luminescent material due to their low price and adjustable photoluminescence (PL). However, the photoluminescence quantum yield (PLQY) of PEA2MnBr4 is relatively low. Herein, Zn2+- and Pb2+-doped PEA2MnBr4 samples are synthesized, and show an intense green emission and orange emission, respectively. After doping with Zn2+, the PLQY of PEA2MnBr4 is elevated from 9% to 40%. We have found that green emitting Zn2+-doped PEA2MnBr4 could transform to a pink color after being exposed to air for several seconds and the reversible transformation from pink to green was achieved by using heating treatment. Benefiting from this property, an anti-counterfeiting label is fabricated, which exhibits excellent "pink-green-pink" cycle capability. Pb2+-doped PEA2Mn0.88Zn0.12Br4 is acquired by cation exchange reaction, which shows intense orange emission with a high QY of 85%. The PL of Pb2+-doped PEA2Mn0.88Zn0.12Br4 decreases with increasing temperature. Hence, the encrypted multilayer composite film is fabricated relying on the different thermal responses of Zn2+- and Pb2+-doped PEA2MnBr4, whereby the encrypted information can be read out by thermal treatment.
Collapse
Affiliation(s)
- Chun Sun
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineeing, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Hu Zhang
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineeing, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Zhihui Deng
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineeing, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Chao Fan
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineeing, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Xiaohui Liu
- Baotou Teachers' College, Inner Mongolia University of Science and Technology, Baotou 014020, China
- Zhejiang Ruico Advanced Material Co., Ltd., No. 188 Liangshan Road, Huzhou 313018, China
| | - Mingming Luo
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineeing, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Yiwei Zhao
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineeing, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| | - Kai Lian
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineeing, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, China
| |
Collapse
|
3
|
Wei T, Lian K, Tao J, Zhang H, Xu D, Han J, Fan C, Zhang Z, Bi W, Sun C. Mn-Doped Multiple Quantum Well Perovskites for Efficient Large-Area Luminescent Solar Concentrators. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44572-44580. [PMID: 36125906 DOI: 10.1021/acsami.2c12834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Luminescent solar concentrators (LSCs) can be used as large-area sunlight collectors, which show great potential in the application of building-integrated photovoltaic areas. Achieving highly efficient LSCs requires the suppression of reabsorption losses while maintaining a high photoluminescence quantum yield (PLQY) and broad absorption. Perovskites as the superstar fluorophores have recently emerged as candidates for large-area LSCs. However, highly emissive perovskites with a large Stokes shift and broad absorption have not been obtained up to now. Here, we devised a facile synthetic route to obtain Mn-doped multiple quantum well (MQW) Br-based perovskites. The Br-based perovskite host ensures broad absorption. Efficient energy transfer from the exciton to the Mn dopant produces a large Stokes shift and high PLQY simultaneously. By further coating the perovskites with Al2O3, the stability and PLQY are greatly elevated. A large area of liquid LSC (40 cm × 40 cm × 0.5 cm) is fabricated, which possesses an internal quantum efficiency (ηint) of 47% and an optical conversion efficiency (ηopt) reaching 11 ± 1%, which shows the highest value for large-area LSCs.
Collapse
Affiliation(s)
- Tong Wei
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Kai Lian
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Jiaqi Tao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Hu Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Da Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Jiachen Han
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Chao Fan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Zihui Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Wengang Bi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Chun Sun
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| |
Collapse
|